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Abstract

Most current metasearch engines provide uniform service to users but do not cater for the specific needs of
individual users. To address this problem, research has been done on personalizing a metasearch engine. An
interesting and practical approach is to optimize its ranking function using clickthrough data. However, it
is still challenging to infer accurate user preferences from the clickthrough data. In this paper, we propose a
novel learning technique called “Spy Naive Bayes” (SpyNB) to identify the user preference pairs generated
from clickthrough data. We then employ ranking SVM to build a metasearch engine optimizer. To evaluate
the effectiveness of SpyNB on ranking quality, we develop a metasearch engine prototype that comprises three
underlying search engines: MSNSearch!, WiseNut? and Overture? to conduct experimental evaluation. The
empirical results show that, compared with the original ranking, SpyNB can significantly improve the average
ranks of users’ click by 20%, while the performance of the existing methods are not satisfactory.
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1. Introduction

The information on the World Wide Web is huge and growing rapidly. An effective search engine is an impor-
tant means for users to find their desired information from billions of Web pages. In particular, metasearch
engines are frequently used nowadays, which allow users to access multiple search engines simultaneously
with an uniform interface.

Personalization of Web search is to carry out Web information retrieval incorporating a user’s interests
captured from his search histories [14]. There are two aspects that need to be addressed to personalize a
metasearch engine. On the one hand, the underlying search engine components may have different strengths
in terms of coverage and speciality and thus different retrieval qualities for different categories of queries.
Therefore, there is a query-specific personalization problem. On the other hand, users may have diversified
preferences on the retrieved Web pages, which produce a user-specific personalization problem. A personal-
ized metasearch engine should be able to adapt its ranking function for different categories of queries and
different communities of users who share similar interests. Therefore, it is a challenging task to optimize the
ranking function of a metasearch engine to cater for users’ preferences.

Some previous studies made use of users’ explicit relevance feedback to adapt search engine’s ranking
function [2, 5]. Nevertheless, users are usually unwilling to give explicit feedback because of the manual
efforts involved. Explicit feedback data are costly and usually too little to be representative. To overcome
this problem, researchers have recently studied the use of clickthrough data, which is a kind of implicit
relevance feedback data, to optimize the ranking functions [4, 10] in an automatic manner.

Formally, clickthrough data is represented as a triplet (g, r,c), where ¢ is the input query, r is the list of
ranked results presented to the user, (I1,...,[,), and c is the set of links that a user has clicked on. Figure 1
illustrates an example of clickthrough data presented in [18], in which the submitted query ¢ is “Biometrics
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Research”. In the figure, three links Iy, I7 and ;¢ are in bold, which means that they have been clicked on
by the user.

| Links | Information of web pages in the search results |

lh Biometrics Research Page
clicked | biometrics.cse.msu.edu
ly National Cancer Institute - Biometric Research
linus.nci.nih.gov/ brb
I3 International Biometric Group

www.biometricgroup.com
ly Microsoft Research - Vision Technology
research.microsoft.com /research/vision

ls Forest Biometrics Research Institute
www.forestbiometrics.com/Institute.htm
lg Signal Processing Research Centre
www.spre.qut.edu.au/research /fingerprint.html
7 Research: Biometrics
clicked | www.nwfusion.com/research/biometrics.html
lg Biometrics: Overview

biometrics.cse.msu.edu/info.html
lg TeKey Research Group
www.tekey.com
l1o Biometrics Research Areas IRL
clicked | www.research.ibm.com/irl/projects/biometrics

Figure 1. The clickthrough data for the query “Biometrics Research”

The main advantage of using clickthrough data is that it does not require extra effort by the user, and
thus can be obtained at very low cost. However, clickthrough data can be noisy and sometimes ambiguous.
As a consequence, it is more difficult to interpret clickthrough data than explicit relevance feedback data.

In essence, there are two steps to optimize the ranking function with respect to users’ preferences of
a metasearch engine. The first step is to identify user preferences which are usually represented as pairs
of clickthrough data items. The second step is to optimize the ranking function which takes into account
the preference pairs provided by the first step. There exists an effective algorithm, ranking SVM [10] in
the second step, while little research has investigated the first step previously. In this paper, we focus on
the first step and reinvestigate the problem: How do we accurately elicit user preference information from
clickthrough data?

We propose a novel learning technique called Spy Naive Bayes (SpyNB), which analyze the titles, ab-
stracts and URLs of returned links to identify the actual irrelevant links. The SpyNB provides a natural
way to discover the real user preference information from implicit feedback data (e.g. clickthrough), for the
reason that users actually made their relevance judgements by examining on the titles, abstracts and URLs.

The rest of this paper is organized as follows. In Section 2, we briefly review the related works. In
Section 3, we present our SpyNB algorithm to identify user preference information from clickthrough data.
In Section 4, we revisit the idea of ranking SVM. In Section 5, the experimental results are reported. Section
6 discusses related issues and Section 7 concludes the paper.

2. Related Work

The work related to the process of learning metasearch engine rankers using clickthrough data falls in two
areas. The first area is the study of optimization of a ranking function in search engines. The second area is



the study of analyzing clickthrough data to extract users’ preference information. However, most previous
literature has investigated the first area, while little research has focus on the second area.

Regarding the work of optimization of a ranking function, Joachims [10] proposes an effective algorithm
called ranking SVM to learn the retrieval function of a metasearch engine using user preference pairs as
input data. Recently, [18] extends the ranking SVM algorithm to a co-training framework in order to solve
the problem of lack of clickthrough data. The co-training algorithm used in [18] is proposed in [3].

Regarding the work of analyzing clickthrough data, to the best of our knowledge, the only method is
proposed by Joachims [10, 9], which elicits partially relative user preference pairs from clickthrough data.
We call this method “Joachims method” throughout this paper. Joachims method assumes that the users
scan the ranking presented from top to bottom. Therefore, if a user skips link /; and clicks on link /; which
ranks lower than link I; (¢ < j). Joachims method assumes that the user must have observed link I; and
decided not to click on it. Then user preference pairs are elicited as [; <,» I; [10, 9], where <, represents a
user’s preference order of items of the returned result.

As an example shown in Figure 1, the user did not click on s, I3, 4, I5, and g, but clicked on [7. Therefore
according to Joachims method, [7 is more relevant to the user than the other five links. In other words, [7
should rank ahead of those five links in the target ranking. Similarly, [1¢ should rank ahead of ls, I3, l4, I5,
lg, lg, and ly in the target ranking. Let r’ denote the ranking extracted from clickthrough data by Joachims
method. All preference pairs obtained on this clickthrough are shown in Figure 2.

| Preference pairs arising from [y | Preference pairs arising from [ | Preference pairs arising from [y |

Empty Set Iy <4 1o lip <p 1o
Iz < l3 lio <;v I3
lr <y ly lio <pr ly
Iz < ls lio <ir ls
lz7 < lg lio < lg

lio <pr lg
lio <pr lg

Figure 2. Preference pairs derived from clickthrough data using Joachims method

3. Learning Preference Pairs from clickthrough Data

We first discuss some inadequacy of Joachims method of learning preference pairs. Then we propose our
new interpretation of clickthrough data.

3.1 Inadequacy of Partially Preference Pairs

As shown in Figure 2, Joachims method only captures partially relative preference, which means that there
are many links incomparable with each other (e.g., {1 and ls, l7 and lg are incomparable when paired with
respect to <,s). Another observation can be made is that Joachims method is apt to penalize high-ranked
links. That is, the high-ranked links are more likely to appear in the right hand side of preference pairs (E.g.
I3 and l3), which means unpreferred by the user, than the left hand side of preference pairs, which means
preferred by the user.

We argue to remove some assumptions in Joachims method and reinvestigate the problem of obtaining
preference pairs.

First, Joachims’ assumptions on obtaining preference pairs are strong. In reality, users may not strictly
scan the presented results from top to bottom. Also, if a user skips a link, it may due to other reasons,
aside from the skipped link being relatively irrelevant. For example, it may be the reason that the abstract



of skipped links is not informative. Therefore, the preference pairs derived with Joachims method may not
be accurate to understand users’ preferences.

Second, but more importantly, Joachims method is apt to penalize high-ranked links, as most of the
high-ranked links appear on the right hand side of the preference pairs. Our experimental results (Section
5) indicate that, the immoderate penalty on high-ranked links can cause a poor generalization performance.
We will elaborate more on this point in Section 6.

3.2 New Clickthrough Data Interpretation

It is obvious that users do not click on links at random, but make an informed choice. Typically, users click
on links whose titles, abstracts or URLs are interesting to them. Although clickthrough data is usually noisy,
the clicks still convey some user preference information for a large set of clickthrough data. It is therefore
reasonable to regard the clicked links as positive samples, which means that they match user preference from
a statistical point of view. On the other hand, users are usually disinclined to click on all links that match
their information needs. Therefore, it is also reasonable to take all the unclicked links as a set of unlabeled
samples, which contains links either matching or not matching users’ information needs.

Based on the interpretation of clickthrough data described above, the problem becomes how to identify
some reliable negative links from the unlabeled set, where negative means unpreferred or does not match
user’s interests. After the underlying reliable negatives are identified, the user preference can be reflected
that the user prefers all links in the positive set to those in the negative set. Let P denote the positive set,
U denote the unlabeled set and RN denote the reliable negative set, where RN C U. The user preference
pairs can be represented as follows:

l; < lj,Vli € P, lj € RN (1)

Equation 1 indicates that all links from the positive set should rank ahead of those from the reliable negative
set in the target ranking.

As an example, suppose a user uses a search engine to find some research institutes working on “biometric
research” and gets the returned results shown in Figure 1. After manually examining the results, we can see
that only the links lg and lg are not about biometric research institutes. However, the user does not click on
all the other links, instead only clicks on links Iy, I7 and l19. That is because the user may not have enough
patience to click all links that match his information needs. Therefore, harshly penalizing high-ranked links
may lead to mistakes. If we have an effective approach to identify that links I and lg are the actual irrelevant
links, the generated user preference pairs will be more accurate.

3.3 Spy Naive Bayes Technique

How to identify the reliable negative examples from the unlabeled set using only positive and unlabeled data?
Recently, partially supervised classification [11, 12, 13, 19] provides a novel paradigm that constructs clas-
sifiers using positive examples and a large set of unlabeled examples. Finding reliable negative examples
is a crucial step of partially supervised classification, and several techniques have been proposed, such as
the Spy technique [13], 1-DNF [19], and Rocchio method [11]. These techniques have been witnessed to be
effective in the text classification domain. We further incorporate the Spy technique [13] with a novel voting
procedure into the naive Bayes classifier, which we call Spy Naive Bayes (SpyNB) to identify the reliable
negative examples.

We first illustrate how the Naive Bayes [16] is adapted in our context as follows. Let “+” and “~” denote
the positive and negative classes, respectively. Let L = {l1,la,--- ,Ix} denote a set of N links (documents) in
the search results. Each link /; can be described as a word vector (wy,ws, - -+ ,wps) in the vector space model
[1], where the value of w; indicates the times of word w; appearing in the titles, abstracts and URLs. Then,
a naive Bayes classifier is built by estimating the prior probabilities (Pr(+) and Pr(—)) and likelihoods
(Pr(w;|+) and Pr(w;|—)), as shown in Algorithm 1.

In Algorithm 1, §(+|/;) indicates the class label of link /;, whose value is 1 if /; is positive, and 0 otherwise.
Num(wj, ;) is a function counting the number of keyword w; appears in link /;. A is the smoothing factor,
where A =1 is known as the Laplacian smoothing [15], which we use in our experiments.



Algorithm 1 Naive Bayes Algorithm
Input: L — a set of links {l1,l2, -+ ,In}
Procedure:

1: Pr(+) = St

b
N .

2 Pr(—) = =00,
3: for each attribute w; € W do

. ) _ MY N Num(wy,li)8(+]1;) .
4 Priwilt) = GRS TSN, Nmtw, s

i Ty — MY Num(u; 1)S(=1l)
5 Pr(w|-) = NS M S, Num(uy 151

6: end for
Output: Prior probabilities — Pr(+) and Pr(—); Likelihoods — Pr(w;|+) and Pr(w;|—) (j =1,--- , M)

When testing, Naive Bayes classifies an link [ by calculating the posterior probability using Bayes rule:
Pr(+|l) = %)UP)T(H, where Pr(l|4+) = H‘j“;lll Pr(wy,;|+) is the product of the likelihoods of the keywords
in link . Then, link [ is predicted to belong to class “4”, if P(+|l) is larger than P(—|!); and “~” otherwise.

When training data contain only positive and unlabeled examples, the “Spy” technique can be introduced
to learn a naive Bayes classifier [13]. The procedure is shown in Figure 3(a). First, a set of positive examples
S are selected from P and put in U, to act as “spies”. Then, the unlabeled examples in U together with S
are taken as negative to train naive Bayes using Algorithm 1. The obtained classifier is then used to assign
probabilities Pr(+|l) to each example in U U S. After that, a threshold T is decided by the probabilities
assigned to S. An unlabeled example in U is selected as a reliable negative example if its probability is less
than Ts, and thus RN is obtained. The examples in S acts as “spies”, since they are regarded as positive
examples and are put in U pretending as negative examples. During classification, the unknown positive
examples in U is assumed to behave similar to the spies (be assigned comparative probabilities). Therefore,
the reliable negative examples RN can be identified.

In [13], the Spy technique is used in text classification and 15% of positive examples are randomly
selected as spies. The spies are used only once. However, for our metasearch engine optimization problem,
the clickthrough data has some distinct characteristics compared with common texts. For instance, the titles
and abstracts both are very short texts, and the size of positive set (usually several links per query) is also
much smaller than that in text classification domain. As a consequence, the identified RN is not reliable if
only a small part of positive examples are used as spies.
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(a) One step of SpyNB (b) Voting procedure of SpyNB

Figure 3. Spy Naive Bayes Technique



To overcome this problem, we incorporate a novel voting procedure (Figure 3(b)) with “Spy” technique
and propose a Spy Naive Bayes (SpyNB) algorithm. The idea of the voting procedure of SpyNB is as follows.
The algorithm runs a n-times iteration, where n = | P| is the number of positive examples. In each iteration,
a positive example p; in P is selected to act as a spy. It is then put in U to train a naive Bayes classifier
NB;. The probability Pr(+|p;) assigned to the spy p; can be used as a threshold T to select a candidate
reliable negative example set (RNV;). That is, any unlabeled example u; with a smaller probability of being
a positive example than the spy (Pr(+|u;) < T,) will be selected into RN;. And consequently, n candidate
reliable negative sets: RN1, RNs, - , RN, are identified. Then, a voting procedure is taken to combine all
RN; into the final RN. An unlabeled example is included in the final RN, if and only if, it appears in at
least a certain portion (7)) of RN;. The advantage of adopting the voting procedure in SpyNB is that the
procedure makes full use of all positive examples in P. Also, the procedure makes decisions on RN by taking
opinions from all possible spies and thus minimize the influence of random selection of spies.

The SpyNB algorithm is given in Algorithm 2. Steps (2-15) generates n candidates of reliable negative
example sets RN;, and Steps (16-20) combines all RN; into the final RN, using the voting procedure.

Algorithm 2 Spy Naive Bayes Algorithm

Input: P — a set of positive examples; U — a set of unlabeled examples; T\, — a voting threhold; Ts — a spy threshold
Procedure:

1: RleRNQZZRN|p|:{} andRN:{};

2: for each example p; € P do

3: P, =P — {pi};

4 Us=UU{pi};

5 Assign each example in P the class label 1;

6:  Assign each example in Us the class label -1;

7:  Build a naive Bayes classifier on Ps and Us;

8 Classify each example in Us using the NB classifier;

9:  Spy threshold Ts = Pr(+|p;:);
10:  for each u; € U do

11: if Pr(+|u;) < Ts then
12: RN; = RN; U {Uj};
13: end if

14: end for

15: end for

16: for each u; € U do
17: Votes = the number of RN; such that u; € RN;
18:  if Votes > T, X |P| then

19: RN = RN U {u;};
20: end if
21: end for

Output: RN — the set of reliable negative examples

The time complexity of the SpyNB algorithm is O(]P| x V), where |P| is the number of positive examples
and N is the number of all examples, including positive and unlabeled. For typical clickthrough data, |P]
usually is less than ten, and NV is usually less than one hundred. Therefore, the SpyNB algorithm is efficient
on clickthrough data in practice.

4. Optimizing Ranking Functions

After user preference pairs are identified with SpyNB, we employ a ranking SVM [10] to optimize the ranking
function using the generated preference pairs. We now briefly revisit the basic idea of ranking SVM.

For a training data set, T = {(q1,7%), (g2,75), ..., (qn,7})}, where ¢; in T is a query and 7} is the
corresponding target ranking, ranking SVM aims at finding a linear ranking function f(g,d), which holds as



many preference pairs in 7' as possible. f(q,d) is defined as the inner product of a weight vector & and a
feature vector of query-document mapping ¢(q,d). ¢(q,d) describes how well a document d of a link in the
ranking matches a query ¢ (will be detailed in Section 5.2). W gives a weighting of each feature.

Given a weight vector, , retrieved links can be ranked by sorting the values: f(q,d) = & -¢(q,d). Then,
the problem of finding a ranking function, f, becomes finding a weight vector, @, that makes the maximum
number of the following inequalities hold:

For all (d;,d;)ery, (1<k<n): W dlgr, di) > 0 - o(qr, dj) (2)

where (d;, d;) € r}, is a document pair corresponding to the preference pair (I; <p ;) of qi, which means
d; should rank higher than d; in the target ranking of ). Figure 4 illustrates the effect of different weight
vectors on ranking three documents, di, do and ds, while the target ranking is dy <, dy <+ d3. As we
can see, w; is better than &s: the documents are correctly ranked as (di,ds,ds) by uT{, but are ranked as
(dg,dy,ds3) by w3 in which d; < dy does not hold.

1

|

|

|

® d3

Figure 4. Ranking the documents d1, ds, and ds with the weight vectors @7 and s

However, solving @ with the constraints in Equation (2) is NP-hard [7]. An approximate solution can
be obtained by introducing non-negative slack variables, &1, to the inequalities to tolerate some ranking
errors. The inequalities are rewritten as:

For all (di,dj) ET;C, (1 < kSn) : 3-¢(qk,di) >U~</)(qk,dj)+1—§ijk, fijk >0 (3)

and ranking SVM is then formulated as a constrained optimization problem, which is stated as minimizing
the target function:

V(@6 =53 T+CY & (4)

subject to the constraints given in Equation (3).

The basic idea of solving the above optimization problem is as follows: let § be the distance between the
two closest projected documents along a weight vector. In Figure 4, §; and Jo are the distances between
the two closest projections along w; and ws, respectively. If there are several weight vectors that are able
to make all the rankings hold subject to the condition in Equation (3), the one that maximizes the margin
0 is preferred. This is because the larger value of §, the more definite the ranking, and hence the better the
quality of the weight vector w. The summation term, &ijk, of slack variables in target function (4) is the
sum of the errors in ranking pairs. Therefore, minimizing this term can be viewed as minimizing the total
training errors made. Finally, parameter C' is introduced to allow a trade-off between the margin size § and
the total training errors.

As the output, ranking SVM gives a weight vector &, which can be used to rank future retrieved results
by sorting the value: f(q,d) = @ - ¢(¢q,d). The ranking SVM algorithm is implemented in a SVM-Light
software, which can be downloaded at [8].



5. Experiments

5.1 Experiment Setup

In order to evaluate the effectiveness of our method, we develop a metasearch engine prototype that comprises
MSNsearch, WiseNut and Overture. Then we exploit the unbiased experiment setup designed in [9] and run
the experiments as follows. When a user submits a query to our system, the query is sent to the three search
engines. Then, the top 10 links from each search engine are captured and the combined list is produced in
a round-robin way as described in [9, 10]. If a result is returned by more than one search engine, we only
present it once. The titles, abstracts and URLs of the retrieved results are displayed to users in a uniform
style. Therefore, the users do not know that a particular link is from which search engine.

To collect clickthrough data, we ask five graduate students in Computer Science Department, HKUST to
test our system. The users are considered to have the same interests as they come from the same community.
We gave the users three categories of queries for searching: computer science (CS), news and shopping; and
each category contains 30 queries. As thus, the experiment aims to test our ranking function optimizer
in a context of query-specific personalization. But in general, our method can also work for user-specific
personalization. We specify the queries and do not let users test their own queries freely for the reason that
in a query-specific context, we need to know what category a query exactly belongs to. Overall, 340 clicks
are captured for the whole data set. Some statistics of the data set are provided in Figure 5.

| Query category | Computer Science | News | Shopping |
Number of queries 30 30 30
Number of clicks 123 87 130
Avg. clicks per query 4.1 2.9 4.3
Avg. rank clicked on 5.87 5.6 5.59

Figure 5. Statistics on the data set

5.2 Feature Extraction

Defining a feature vector of the query-document mapping ¢(q, d) is important for the experiments. We now
present how the features are extracted in our experiments.

It is known that a metasearch engine does not crawl the Web pages and maintain its own indexes.
Therefore, it is hard to represent the retrieved documents as a vector of all words contained in the document,
because this information is not available for a metasearch engine. On the other hand, other information such
as the ranks in the returned list of underlying search engines can be used to represent documents. Basically,
the features used in our experiments are defined according to common intuition about what information is
important for learning a ranking function. Substantially, they are the same as those used in [10] and [18].

In our experiments, we totally extract 20 features to define the feature vector of ¢(q,d). We classify all
features into three categories, namely, Rank Features, Common Features and Similarity Features.

1. Rank Features (3 numerical features and 12 binary features).

Let search engine E € {M, W, O} (M stands for MSNsearch, W for WiseNut, and O for Overture) and
T €{1,3,5,10}. We define numerical features Rank_F and binary features Top_E_T as follows:

Rank.E {111_0X if document d ranks at X in the result of E, and X <= 10;
Qa _ ==

0 otherwise.

1 if document d ranks top T in the result of F;

Top ET = ]
0 otherwise.



2. Common Features (2 binary features).

e (Com_2: If document d ranks top 10 in at least two search engines, the value is 1, otherwise 0.

e Com_3: If document d ranks top 10 in three search engines, the value is 1, otherwise 0.
3. Similarity Features (1 binary and 2 numerical features).

e Sim_U: The similarity between query and URL is defined as follows:

. 1 if any word in ¢ appears in URL;
Sim_U = .
0 otherwise.

e Sim_T: The cosine similarity between query and title.

e Sim_A: The cosine similarity between query and abstract.
The feature vector ¢(q,d) is defined with all the above extracted features as given below:

(Rank_M,Top-M_1,..., Rank_W,... Rank_O,...,Top-O_10,Com2,...,Sim.U,..., Sim_A)

5.3 Experimental Results

We conduct offline experiments to verify the effectiveness of our SpyNB method on the data set described
above. We compare our SpyNB method with the Joachims method [10] described in Section 2. As stated
before, Joachims method harshly penalizes high-ranked links, which leads to a poor generalization perfor-
mance. To verify this point, we simply modify Joachims method to make a “mJoachims” method to generate
user preference pairs. The mJoachims method selects some preference pairs with the high-ranked links ap-
pearing in the left hand side, to alleviate the penalty on high-ranked links by standard Joachims method.
To illustrate the idea of mJoachims method, suppose [; is a clicked link, /; is the next clicked link right after
I; (that is, none of clicked links exists between I; and l;), and I, is any skipped link ranks between [; and [;,
then the preference pairs derived with mJoachims method are those derived with standard Joachims method
added with all pairs I; <, Iy (i < k < j). As an example, the preference pairs derived with mJoachims
method from the clickthrough data in Figure 1, are shown in Figure 6.

| Preference pairs arising from [y | Preference pairs arising from [ | Preference pairs arising from [y |

Iy < lo lz <o ly lio < 1o
I < 13 lr < 3 lig < I3
I < ly lr < ly lig <pr ly
I < 15 lr < ls lig < 5
Iy < lg lz < lg lig < lg

lr < g lig <, g

lz <rr ly Lo <4 Iy

Figure 6. Preference pairs derived from clickthrough data using mJoachims method

We conduct comparison experiments on the three methods: SpyNB, Joachims and mJoachims. The
procedure is as follows. We first respectively use the three methods to elicit users’ preference pairs from
clickthrough data on a training set. After that, we employ the ranking SVM algorithm to learn the ranking
functions using the elicited preference pairs. Finally, we test the learned ranking functions on a testing set
with the criterion of average rank of users’ clicks. We divide the training and testing set based on 3-fold
cross-validation [6]. In the experiment, the voting threshold T, in Algorithm 2 is set as 50%.



The evaluation metric we use is the average rank of users’ clicks, distinguishing from that in [10], which
has some defects as discussed in Section 6. In terms of our metric, it is obvious that with the same number
of users’ clicks, the lower the average rank of users’ clicks, the better the ranking function.

Comparison results are provided in Figure 7, in which the “Original” means the original ranking presented
to the user. To show the actual improvement, we compute the relative values of average rank in Figure 8,
which is the average rank of users’ clicks obtained by a learning method divided by that of the original rank
(values smaller than 1 indicate improvement).

| | CS | News | Shopping | ‘
Original 5.87 5.6 5.59
SpyNB 4.91 4.42 4.65
Joachims 13.62 | 15.3 15.8
mJoachims 9.8 10.72 12.03

| CS | News | Shopping ’

SpyNB 0.836 | 0.789 0.832
Joachims 2.32 2.73 2.83
mJoachims | 1.67 1.91 2.15

Figure 8. Relative improvement of three methods

Figure 7. Comparison on average rank of users’ . . .
& P & on original ranking

clicks of three methods

From the results in Figure 7 and Figure 8, we can see that SpyNB can significantly improve the quality
of the ranking function in terms of minimizing the average rank of users’ clicks. The values of SpyNB in
Figure 8 are about 0.8, which means SpyNB can improve (decrease) the average ranks of users’ clicks at
about 20%. However, we can see that the performance of Joachims method is not satisfactory. Its average
ranks of users’ clicks (greater than 1) are even worse than the original ranking. The reason is that Joachims
method is harshly penalizing high-ranked documents, while most of the user clicked links in the testing set
are high ranked, thus it produces a large average rank of users’ clicks. In the experiment, mJoachims method
outperforms standard Joachims method, which verifies our statement, while mJoachims method is simply
adding some pairs to counteract the penalty on high-ranked links of Joachims method.

What do the learned ranking functions look like? As detailed in Section 5.2, the learned ranking function
in our experiment is a weight vector comprising 20 components. We list the weight vectors learned on the
query categories of “Computer Science”, and “Shopping” in Figure 9 and Figure 10 respectively. Intuitively,
the features with high absolute weights have large impacts on the resulted ranking. In particular, a higher
positive (negative) weight indicates that the links with this feature will be ranked higher (lower) in the
combined list. As we can see, the weight vector of the “Computer Science” category and the “Shopping”
category are quite distinguishable, which clearly indicates that the underlying search engines have different
strengths in terms of topical specialty.

| Feature | Weight || Feature | Weight | | Feature | Weight || Feature | Weight |
Rank_M 1.811 Rank W 1.275 Rank_M 1.154 Rank W -0.217
Top-M_1 0.566 Top-W_1 0.480 Top_-M_1 0.108 Top W_1 0.355
Top_-M_3 -0.003 Top-W_3 0.229 Top_M_3 0.563 Top-W_3 0.362
Top-M_5 0.063 Top W _5 -0.138 Top-M_5 -0.045 Top W _b -0.364
Top_M_10 | -0.021 Top-W_10 | -0.458 Top_-M_10 | -0.757 Top-W_10 | -1.429
Rank_O 0.415 Sim_A 0.357 Rank_O 1.019 Sim_A 0.025
Top_-O_1 -0.677 Sim_T 0.785 Top_O_1 0.718 Sim_T 0.520
Top-O3 0.447 Sim_U 0.288 Top-O3 0.586 Sim U -0.106
Top.O5 -0.087 Com?2 0.186 Top.O5 0.528 Com2 0.240
Top-O_10 | -0.440 Com3 -0.226 Top-O_10 -0.864 Com3 0

Figure 9. Learned weight vector of the “Computer Figure 10. Learned weight vector of the “Shopping”
Science” category category

We can also draw some user preference information of the group of users in our experiment from the
learned weight vector. Generally speaking, the numerical Rank Features: Rank_M, Rank_O and Rank W



reflect the relative importance of MSNSearch, Overture and WiseNut respectively. As we can see from
Figure 9 and Figure 10, the values of Rank_M are the largest for both the “Computer Science” and the
“Shopping” categories. The value of Rank_O is small for the “Computer Science” category, but large (almost
equal to Rank_M) for the “Shopping” category. Moreover, the values of Rank_W are relative small for both
categories. These observations indicate that MSNSearch are strong in all the queries in both categories,
Overture is particularly good at shopping queries, and WiseNut does not have outstanding performance in
any query category. These observations are consistent with the recent survey on search engines [17], which
claims that MSNSearch is considered as one of the best general search engines in the world, Overture is an
advertising search engine, and WiseNut is a growing search engine which still needs to perfect itself.

6. Discussion

In this section, we further discuss two interesting problems related to this work. The first problem is why
harshly penalizing high-ranked links as shown in Joachims method can lead to a over generalization of a
ranking function, which is undesirable for ranking quality. The second problem is why the evaluation metric
“prediction error” used in [10] is not applicable in our offline experiments.

As for the first problem, we need to explain what “over generalization” means. Let us use the clickthrough
of the query “biometric research” in Table 1 as an example, in which links Iy, I7 and l;¢ are clicked. Let
us also assume this clickthrough is the only example available in the training set. Intuitively, the ranking
function derived with Joachims method will then make the links 7 and l1¢9 rise up, but the links Is,... /g
fall down in a testing process. However, the training and testing are conducted on a set of more than one
clickthroughs and most of them are not of “biometric research” queries. Thus, the training and testing
processes are overly “generalized” by the links l7 and [y, since these links may not be clicked links in many
testing clickthroughs. In reality, most of users’ clicks in testing set are high-ranked links, since the users
typically are disinclined to see low-ranked results. Therefore, Joachims method is apt to penalize high-
ranked links, and make high-ranked links unnecessarily fall down when testing. Such harsh penalization on
high-ranked links makes the Joachims method have a poor ranking performance.

As for the second problem, the evaluation metric used in [10] is the “prediction error” parameter, which
is defined as the percentage of preference pairs generated in the first step that are not fulfilled after the links
in a testing example are ranked by a learned ranking function. We exemplify the computational process
of the clickthrough data shown in Table 2 as follows. For this clickthrough, there are totally 12 preference
pairs identified by Joachims method (in Table 1). Suppose that after this clickthrough is ranked by a learned
ranking function, 9 out of 12 pairs are fulfilled, then the “prediction error” value is computed as: % = 25%.

This “prediction error” metric can be used to evaluate the ranking SVM algorithm in [10], by assuming
the preference pairs derived with Joachims method as correct rules. However, the preference pairs identified
by SpyNB and Joachims method are different, and thus the “prediction error” parameters of them are
incomparable. On the other hand, a ranking function with a low “prediction error” can still produce a large
value of average rank of users’ clicks. In our experiments, the ranking function derived with Joachims method
can achieve a quite good “prediction error” at about 17% on the “computer science” category. However it
produces the average rank of users’ clicks more than a double of the original value. Thus, we adopt the
average rank of users’ clicks parameter in our experiments, which we consider a better evaluation metric
than the “prediction error” used in [10].

7. Conclusions and Future Work

This paper presents an effective approach to personalize metasearch engines using clickthrough data. Our
approach consists of two learning steps. In the first step, we propose a novel SpyNB method to identify
user preference pairs from clickthrough data. After that, we employ ranking SVM to optimize the ranking
function using the preference pairs identified in the first step. The experimental results demonstrate that our
method can significantly improve the ranking quality in terms of the average rank of users’ clicks compared
with the original ranking and the existing methods.



As a future work, we are going to enhance our metasearch engine system and to make it available on the

Web. We also plan to conduct online experiments to evaluate our method.
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