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Abstract 
In this write up, we explain the design of 
Tadpole, a Meta search engine which 
obtains results from various search engines 
and aggregates them. We discuss three 
meta-search ranking strategies – two 
positional methods and a scaled foot rule 
optimization method and study the response-
time/result quality trade-offs involved. 

 
1.Introduction 

A Meta search engine transmits user’s 
search simultaneously to several individual 
search engines and their databases of web 
pages and gets results from all the search 
engines queried. We could thus save a lot of 
time by initiating the search at a single point 
and sparing the need to use and learn several 
separate search engines. This can be even 
more helpful, if we are looking for a broad 
range of results. 

In our project, we have implemented a Meta 
search engine, which queries Google, 
Altavista and MSN databases. We have 
provided an interface for searching these 
search engines along with several advanced 
options for phrase search, conjunction, 
disjunction and negation of the key words. 
In order to rank the results obtained, we 
have made use of three rank aggregation 
strategies and evaluated the results obtained. 
Out of these, two are positional methods, 
which make use of the result’s rank in each 
of the separate search engine to obtain a new 
rank by simple aggregation. The third one is 
a scaled foot rule optimization technique. 
 
2.Motivation 

There are primarily two motivating factors 
behind our developing a meta-search engine. 
Firstly, the World Wide Web is a huge 
unstructured corpus of information. Various 

search engines crawl the WWW from time 
to time and index the web pages. However, 
it is virtually impossible for any search 
engine to have the entire web indexed. Most 
of the time a search engine can index only a 
small portion of the vast set of web pages 
existing on the Internet. Each search engine 
crawls the web separately and creates its 
own database of the content. Therefore, 
searching more than one search engine at a 
time enables us to cover a larger portion of 
the World Wide Web. 

Secondly, crawling the web is a long 
process, which can take more than a month 
whereas the content of many web pages 
keep changing more frequently and 
therefore, it is important to have the latest 
updated information, which could be present 
in any of the search engines. 

Meta Search engines help us achieve the 
afore-mentioned objectives. However, we 
need good ranking strategies in order to 
aggregate the results obtained from the 
various search engines. Quite often, many 
web sites successfully spam some of the 
search engines and obtain an unfair rank. By 
using appropriate rank aggregation 
strategies, we can prevent such results from 
appearing in the top results of a meta-search. 

Our primary motivation was to develop a 
simple meta-search engine and study the 
response-time and performance trade-offs 
involved. 
 
3.Previous Work 

There are quite a few Meta search engines 
available on the Internet, which can be 
categorized as follows 

1. Meta search engines for serious deep 
digging Ex: Surfwax, Copernic Basic 



2. Meta Search engines which aggregate the 
results obtained from various search engines 
Ex: Vivisimo, Ixquick 

3. Meta Search engines which present 
results without aggregating them Ex: 
Dogpile 

    Meta-search engines of the first kind 
are not available as free-software. So, their 
benefits are not reaped by most users. Some 
of the other issues involved and drawbacks 
of meta-search engines are provided in [3]. 

An aggregation of the results obtained 
would be more useful than just dumping the 
normal results. For such an aggregation, 
Ravi Kumar et al [1] have suggested several 
Rank aggregation methods for the web, 
broadly categorized as  Borda’s positional 
methods, Foot rule /Scaled Foot rule 
Optimization methods, Markov Chain 
methods for rank aggregation. They also 
suggest a local Kemenization technique, 
which brings the results that are ranked 
higher by the majority of the search engines 

to the top of the Meta search-ranking list. 
This is effective in avoiding spam. 

4.Organization 

The organization for the report is as 
follows:Section 5 discusses the architecture 
and design of Tadpole, the meta-search 
engine developed by us. Section 6 gives a 
study of the tradeoffs involved. In Section 7. 
we describe a few problems we encountered 
during the project. Section 8 gives the 
conclusion and future work. 

5.Architecture of Tadpole  

When a user issues a search request, 
multiple threads are created in order to fetch 
the results from various search engines. 
Each of these threads is given a time limit of 
3 seconds to return the results, failing which 
a time out occurs and the thread is 
terminated.  

Each process converts the given query to the 
format specific to the search engine it is
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dealing with. This request is sent to the 
search engine via the java URL object and 
the results are obtained in the form of a 
HTML page. This HTML results page is 
parsed by the process and for each result, the 
URL, Title, Description, Rank and 
SearchSource are stored, creating a Result 
object. These results are entered into a 
TreeMap data structure with the key as the 
url and the item as the Result object. 

The GUI also provides for advanced search 
options for entering Boolean queries, Phrase 
searches, selecting the number of results per 
search engine and the selection of search 
engines to be queried. 

5.1 Design Decisions 

 During the design of Tadpole, we 
various design decisions were taken. Some 
of them are listed below: 

Why TreeMap? 

TreeMap data structure combines the nice 
features of a tree ( low  search and retrieval 
time) and Map (easy association) data 
structures. By storing the results with the 
URL as the key, we can retrieve a result in 
(log n) time while removing the duplicates 
and merging them in the ranking algorithm. 
This helps in a considerable speed up when 
we have hundreds of results from each 
search engine. 

The TreeMaps thus obtained from each of 
the threads are then inserted in an array and 
passed on to the Ranking algorithm. The 
Ranking algorithm then returns a tree map 
sorted on rank. 

Why these three ranking strategies? 
The positional methods are computationally 
more efficient. They give a good precision 
when compared to just aggregation of results 
without using any ranking. The scaled-
footrule method is computationally more 
complex, but is proven to have given much 
better performance. It is also useful in the 
reduction of spam to an extent. As the basic 
idea of this project was to study the trade-
offs involved, we wanted to get a gradation 
in the level of computational complexity and 

performance and so we chose these three 
rank aggregation methods. 
 
5.2 Ranking Aggregation Methods 
Implemented 
Take the Best Rank 
In this algorithm, we try to place a URL at 
the best rank it gets in any of the search 
engine rankings. 
That is,  
MetaRank (x) =  
Min(Rank1(x),Rank2(x),…. , Rankn(x)); 
Clashes are avoided by an ordering of the 
search engines based on popularity. That 
means, if two results claim the same position 
in the meta-rank list, the result from a more 
popular search engine, (say Google) is 
preferred to the result from a less popular 
one. 
 
Borda’s Positional Method 
In this algorithm, the MetaRank of a url is 
obtained by computing the Lp-Norm of the 
ranks in different search engines. 
MetaRank(x)=  
[Σ(Rank1(x)p,Rank2(x)p,…. , Rankn(x) p)]1/p 
In our algorithm, we have considered the 
L1-Norm which is the sum of all the ranks 
in different search engine result lists. 
Clashes are again avoided by search engine 
popularity.  
The search source for a URL, which is 
displayed in the meta search results, is set as 
the search engine in which the URL is 
ranked the best. 
 
Scaled Footrule Optimization Method 
In this algorithm, the scaled footrule 
distances are used to rank the various 
results. Let  T1, T2 , … Tn be partial lists 
obtained from various search engines. Let 
their union be S. A weighted bipartite graph 
for scaled footrule optimization (C,P,W) is 
defined as 
C = set of nodes to be ranked 
P = set of positions available 
W(c,p) = is the scaled- footrule distance ( 
from the Ti’s ) of a ranking that places 
element ‘c’ at position ‘p’, given by 
   W(c,p) = ∑I=1

k | Ti(c)/|Ti| - p/n| 



  Where n = number of results to be ranked 
and |Ti| gives the cardinality of Ti. 
Computation of foot-rule aggregation for 
partial lists is NP-hard [1]. Hence the use of 
scaled foot-rule distance measure. This 
problem can be converted to a minimum 
cost perfect matching in bipartite graphs 
described above. There are various 
algorithms for finding the minimum cost 
perfect matching in bipartite graphs. We 
have used the Hungarian method for doing 
it. 
The Hungarian method proceeds as follows: 

- Obtain the reduced cost matrix from 
the given cost matrix by subtracting 
the minimum of each row and each 
column from all the other elements 
of it. 

- Try to cover all the zeroes with the 
minimum number of horizontal and 
vertical lines.  

- If the number of lines equals the 
size of the matrix, find the solution. 

- If you have covered all of the zeroes 
with fewer lines than the size of the 
matrix, find the minimum number 
that is uncovered.  

- Subtract it from all uncovered 
values and add it to any value(s) at 
the intersections of your lines. 

- Repeat until a solution is obtained. 
A detailed description of the algorithm 
is provided  in [3] 
 

 
6.Evaluation of Ranking Strategies 
6.1 Algorithmic Complexity 
 The first parameter for testing the 
three ranking strategies is the time 
complexity of the algorithms. The positional 
methods – MinRanker and Borda’s 

positional method take linear time, that 
means they have a complexity of O(n).  
Scaled Footrule optimization can be solved 
using the Hungarian algorithm for Bipartite-
matching. 
 
6.2 Rank Aggregation Time  

The aggregation times of various 
ranking strategies were measured with 
respect to each other and with normal 
search engines. The evaluation was 
carried out with respect to the following 
set of 38 queries, which were previously 
used in other studies [1,4,5] 

affirmative action, 
alcoholism, amusement 
parks, architecture, 
bicycling, blues, cheese, 
citrus groves, classical 
guitar, computer vision, 
cruises, Death Valley, field 
hockey, gardening, graphic 
design, Gulf war, HIV, java, 
Lipari, lyme disease, mutual 
funds, National parks, 
parallel architecture, 
Penelope Fitzgerald, 
recycling cans, rock 
climbing, San Francisco, 
Shakespeare, stamp 
collecting, sushi, table 
tennis, telecommuting, 
Thailand tourism, vintage 
cars, volcano, zen 
buddhism, and Zener. 

The results are summarized below: 
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Average Rank Aggregation Times 
Naïve Ranking - 18.6 msec 
Borda’s Ranking - 51.2 msec 
FootRule Ranking - 161.5 msec 
 
We observe that the rank aggregation 
times for the foot rule ranking are on an 
average thrice those for the Borda’s 
positional ranking. 
 
6.3 Overlap across search engines – 
Relative Search Engine Performance 
Among the top 10 results obtained for each 
query , we found the results that overlap 
across multiple search engines. An 
interesting observation would be to find 
which search engines rank the overlapping 
results better. An intuition behind such a 
measure is that a search engine, which ranks 
the overlapping results, better can be 
regarded as a better search engine 

considering that the overlapping results are 
more relevant. 
 
6.4 Performance of the various rank 
aggregation methods 
In evaluating the performance of the 
ranking strategies for all the queries, we 
have chosen precision as a good measure 
of relative performance. because all the 
ranking strategies work on the same set 
of results and try to get the most relevant 
ones to the top. Hence, a strategy that 
has a higher precision at the top can be 
rated better from the user’s perspective.  
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We have plotted the precision of the ranking 
strategies with respect to both the number of 
search results and the recall. 

In considering the recall, we have taken the 
total number of relevant documents based on 
user evaluation of all the top 10 results 
retrieved by each search engine. The recall 
is calculated as the number of relevant 
documents retrieved/ total number of 
relevant results thus judged. 

 We have taken the relevance feedback from 
two different judges. The Kappa measure of 
this relevance feedback is 0.78. In the 
following graphs, we present the results for 
two out of the 38 queries run. We also 
present the average of the results obtained 
over the 38 queries. 

6.4.1 Precision with respect to Number of 
Results returned  
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Query:Alcoholism
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It can be observed that on an average, the 
footrule distance ranking aggregation 
method gives better precision for the given 

set of results. Also, easily computable 
Borda’s method does a good job when 
compared to the Naïve ranking method.

 
6.4.2 Precision vs. Recall 
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A similar observation can be made with respect to the precision at a given recall for each of the 
ranking strategies. 
 
7.Problems encountered 
 During the design of the advance 
search interface, we realized that all the 
options that normal search engines provide, 
could not be made available because, each 
search engine provides a different set of 
advanced options. 
 Some of the advanced search 
options implemented in the different search 
engines are tabulated below. There are other 
advanced search options like file format, 

language specific search which have not 
been explored as part of this project.  

Another major issue we faced was 
finding an optimal algorithm for 
implementing minimum cost bipartite 
matching. We chose to implement the 
Hungarian method, but in retrospect we 
think other efficient algorithms would have 
been better. 
 



Feature Google MSN Altavista Tadpole 
Conjunction Yes Yes Yes Yes 
Disjunction Yes Yes Yes Yes 
Negation Yes Yes Yes Yes 
Phrase Search Yes Yes Yes Yes 
Number of 
results per page 

No (for the API) No Yes No 

 
8.Conclusion and Future Work 
In the context of our project, we have 
studied some trade-offs that are involved in 
the design of meta-search engines. We have 
observed that the computational complexity 
of ranking algorithms used and performance 
of the meta-search engine are conflicting 
parameters. A compromise must be achieved 
between these two, based on the perceived 
applications and environment in which the 
meta-search engine will be used. 
  
Future work involves, incorporating more 
number of search engines in the study, 
studying the performance for the most 
popular queries published by the various 
search engines, incorporate local 
kemmenization to e spam, to incorporate 
methods for avoiding mirrored search 
results. 
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