
Tadpole: A Meta search engine
Evaluation of Meta Search ranking strategies

www.stanford.edu/~pavan/tadpole.html

Mahathi S Mahabhashyam
mmahathi@stanford.edu

Pavan Singitham
pavan@stanford.edu

Abstract
In this write up, we explain the design of
Tadpole, a Meta search engine which
obtains results from various search engines
and aggregates them. We discuss three
meta-search ranking strategies – two
positional methods and a scaled foot rule
optimization method and study the response-
time/result quality trade-offs involved.

1.Introduction

A Meta search engine transmits user’s
search simultaneously to several individual
search engines and their databases of web
pages and gets results from all the search
engines queried. We could thus save a lot of
time by initiating the search at a single point
and sparing the need to use and learn several
separate search engines. This can be even
more helpful, if we are looking for a broad
range of results.

In our project, we have implemented a Meta
search engine, which queries Google,
Altavista and MSN databases. We have
provided an interface for searching these
search engines along with several advanced
options for phrase search, conjunction,
disjunction and negation of the key words.
In order to rank the results obtained, we
have made use of three rank aggregation
strategies and evaluated the results obtained.
Out of these, two are positional methods,
which make use of the result’s rank in each
of the separate search engine to obtain a new
rank by simple aggregation. The third one is
a scaled foot rule optimization technique.

2.Motivation

There are primarily two motivating factors
behind our developing a meta-search engine.
Firstly, the World Wide Web is a huge
unstructured corpus of information. Various

search engines crawl the WWW from time
to time and index the web pages. However,
it is virtually impossible for any search
engine to have the entire web indexed. Most
of the time a search engine can index only a
small portion of the vast set of web pages
existing on the Internet. Each search engine
crawls the web separately and creates its
own database of the content. Therefore,
searching more than one search engine at a
time enables us to cover a larger portion of
the World Wide Web.

Secondly, crawling the web is a long
process, which can take more than a month
whereas the content of many web pages
keep changing more frequently and
therefore, it is important to have the latest
updated information, which could be present
in any of the search engines.

Meta Search engines help us achieve the
afore-mentioned objectives. However, we
need good ranking strategies in order to
aggregate the results obtained from the
various search engines. Quite often, many
web sites successfully spam some of the
search engines and obtain an unfair rank. By
using appropriate rank aggregation
strategies, we can prevent such results from
appearing in the top results of a meta-search.

Our primary motivation was to develop a
simple meta-search engine and study the
response-time and performance trade-offs
involved.

3.Previous Work

There are quite a few Meta search engines
available on the Internet, which can be
categorized as follows

1. Meta search engines for serious deep
digging Ex: Surfwax, Copernic Basic

2. Meta Search engines which aggregate the
results obtained from various search engines
Ex: Vivisimo, Ixquick

3. Meta Search engines which present
results without aggregating them Ex:
Dogpile

 Meta-search engines of the first kind
are not available as free-software. So, their
benefits are not reaped by most users. Some
of the other issues involved and drawbacks
of meta-search engines are provided in [3].

An aggregation of the results obtained
would be more useful than just dumping the
normal results. For such an aggregation,
Ravi Kumar et al [1] have suggested several
Rank aggregation methods for the web,
broadly categorized as Borda’s positional
methods, Foot rule /Scaled Foot rule
Optimization methods, Markov Chain
methods for rank aggregation. They also
suggest a local Kemenization technique,
which brings the results that are ranked
higher by the majority of the search engines

to the top of the Meta search-ranking list.
This is effective in avoiding spam.

4.Organization

The organization for the report is as
follows:Section 5 discusses the architecture
and design of Tadpole, the meta-search
engine developed by us. Section 6 gives a
study of the tradeoffs involved. In Section 7.
we describe a few problems we encountered
during the project. Section 8 gives the
conclusion and future work.

5.Architecture of Tadpole

When a user issues a search request,
multiple threads are created in order to fetch
the results from various search engines.
Each of these threads is given a time limit of
3 seconds to return the results, failing which
a time out occurs and the thread is
terminated.

Each process converts the given query to the
format specific to the search engine it is

Error!.

Figure 1

Parallel processes query
different search engines
and obtain the results

SE#

SE#

SE#

Ranking
Algorithm

Array of
TreeMaps

Aggre-
gated
Results

TreeMap sorted
on rank

dealing with. This request is sent to the
search engine via the java URL object and
the results are obtained in the form of a
HTML page. This HTML results page is
parsed by the process and for each result, the
URL, Title, Description, Rank and
SearchSource are stored, creating a Result
object. These results are entered into a
TreeMap data structure with the key as the
url and the item as the Result object.

The GUI also provides for advanced search
options for entering Boolean queries, Phrase
searches, selecting the number of results per
search engine and the selection of search
engines to be queried.

5.1 Design Decisions

 During the design of Tadpole, we
various design decisions were taken. Some
of them are listed below:

Why TreeMap?

TreeMap data structure combines the nice
features of a tree (low search and retrieval
time) and Map (easy association) data
structures. By storing the results with the
URL as the key, we can retrieve a result in
(log n) time while removing the duplicates
and merging them in the ranking algorithm.
This helps in a considerable speed up when
we have hundreds of results from each
search engine.

The TreeMaps thus obtained from each of
the threads are then inserted in an array and
passed on to the Ranking algorithm. The
Ranking algorithm then returns a tree map
sorted on rank.

Why these three ranking strategies?
The positional methods are computationally
more efficient. They give a good precision
when compared to just aggregation of results
without using any ranking. The scaled-
footrule method is computationally more
complex, but is proven to have given much
better performance. It is also useful in the
reduction of spam to an extent. As the basic
idea of this project was to study the trade-
offs involved, we wanted to get a gradation
in the level of computational complexity and

performance and so we chose these three
rank aggregation methods.

5.2 Ranking Aggregation Methods
Implemented
Take the Best Rank
In this algorithm, we try to place a URL at
the best rank it gets in any of the search
engine rankings.
That is,
MetaRank (x) =
Min(Rank1(x),Rank2(x),…. , Rankn(x));
Clashes are avoided by an ordering of the
search engines based on popularity. That
means, if two results claim the same position
in the meta-rank list, the result from a more
popular search engine, (say Google) is
preferred to the result from a less popular
one.

Borda’s Positional Method
In this algorithm, the MetaRank of a url is
obtained by computing the Lp-Norm of the
ranks in different search engines.
MetaRank(x)=
[Σ(Rank1(x)p,Rank2(x)p,…. , Rankn(x) p)]1/p
In our algorithm, we have considered the
L1-Norm which is the sum of all the ranks
in different search engine result lists.
Clashes are again avoided by search engine
popularity.
The search source for a URL, which is
displayed in the meta search results, is set as
the search engine in which the URL is
ranked the best.

Scaled Footrule Optimization Method
In this algorithm, the scaled footrule
distances are used to rank the various
results. Let T1, T2 , … Tn be partial lists
obtained from various search engines. Let
their union be S. A weighted bipartite graph
for scaled footrule optimization (C,P,W) is
defined as
C = set of nodes to be ranked
P = set of positions available
W(c,p) = is the scaled- footrule distance (
from the Ti’s) of a ranking that places
element ‘c’ at position ‘p’, given by
 W(c,p) = ∑I=1

k | Ti(c)/|Ti| - p/n|

 Where n = number of results to be ranked
and |Ti| gives the cardinality of Ti.
Computation of foot-rule aggregation for
partial lists is NP-hard [1]. Hence the use of
scaled foot-rule distance measure. This
problem can be converted to a minimum
cost perfect matching in bipartite graphs
described above. There are various
algorithms for finding the minimum cost
perfect matching in bipartite graphs. We
have used the Hungarian method for doing
it.
The Hungarian method proceeds as follows:

- Obtain the reduced cost matrix from
the given cost matrix by subtracting
the minimum of each row and each
column from all the other elements
of it.

- Try to cover all the zeroes with the
minimum number of horizontal and
vertical lines.

- If the number of lines equals the
size of the matrix, find the solution.

- If you have covered all of the zeroes
with fewer lines than the size of the
matrix, find the minimum number
that is uncovered.

- Subtract it from all uncovered
values and add it to any value(s) at
the intersections of your lines.

- Repeat until a solution is obtained.
A detailed description of the algorithm
is provided in [3]

6.Evaluation of Ranking Strategies
6.1 Algorithmic Complexity
 The first parameter for testing the
three ranking strategies is the time
complexity of the algorithms. The positional
methods – MinRanker and Borda’s

positional method take linear time, that
means they have a complexity of O(n).
Scaled Footrule optimization can be solved
using the Hungarian algorithm for Bipartite-
matching.

6.2 Rank Aggregation Time

The aggregation times of various
ranking strategies were measured with
respect to each other and with normal
search engines. The evaluation was
carried out with respect to the following
set of 38 queries, which were previously
used in other studies [1,4,5]

affirmative action,
alcoholism, amusement
parks, architecture,
bicycling, blues, cheese,
citrus groves, classical
guitar, computer vision,
cruises, Death Valley, field
hockey, gardening, graphic
design, Gulf war, HIV, java,
Lipari, lyme disease, mutual
funds, National parks,
parallel architecture,
Penelope Fitzgerald,
recycling cans, rock
climbing, San Francisco,
Shakespeare, stamp
collecting, sushi, table
tennis, telecommuting,
Thailand tourism, vintage
cars, volcano, zen
buddhism, and Zener.

The results are summarized below:

Rank aggregation time

0

100

200

300

400
1 4 7 10 13 16 19 22

query

Ti
m

e(
 in

 m
ill

i
se

co
nd

s) Naïve Ranking
Borda's Ranking
Foot Rule Ranking

Average Rank Aggregation Times
Naïve Ranking - 18.6 msec
Borda’s Ranking - 51.2 msec
FootRule Ranking - 161.5 msec

We observe that the rank aggregation
times for the foot rule ranking are on an
average thrice those for the Borda’s
positional ranking.

6.3 Overlap across search engines –
Relative Search Engine Performance
Among the top 10 results obtained for each
query , we found the results that overlap
across multiple search engines. An
interesting observation would be to find
which search engines rank the overlapping
results better. An intuition behind such a
measure is that a search engine, which ranks
the overlapping results, better can be
regarded as a better search engine

considering that the overlapping results are
more relevant.

6.4 Performance of the various rank
aggregation methods
In evaluating the performance of the
ranking strategies for all the queries, we
have chosen precision as a good measure
of relative performance. because all the
ranking strategies work on the same set
of results and try to get the most relevant
ones to the top. Hence, a strategy that
has a higher precision at the top can be
rated better from the user’s perspective.

Performance of search engines for
overlapped results

59%22%

19%
Google

Altavista

Msn

We have plotted the precision of the ranking
strategies with respect to both the number of
search results and the recall.

In considering the recall, we have taken the
total number of relevant documents based on
user evaluation of all the top 10 results
retrieved by each search engine. The recall
is calculated as the number of relevant
documents retrieved/ total number of
relevant results thus judged.

 We have taken the relevance feedback from
two different judges. The Kappa measure of
this relevance feedback is 0.78. In the
following graphs, we present the results for
two out of the 38 queries run. We also
present the average of the results obtained
over the 38 queries.

6.4.1 Precision with respect to Number of
Results returned

Query:Gardening

0

0.5

1

1.5

2 6 10 14 18 22 26

Number of Results

Pr
ec

is
io

n Borda Method

Naïve Ranking

Foot rule
Ranking

Query:Alcoholism

0

0.5

1

1.5

2 6 10 14 18 22 26

Number of Results

Pr
ec

is
io

n Borda Method

Naïve Ranking

Foot rule
Ranking

Average Precision over 38 queries

0

0.5

1

1.5

2 6 10 14 18 22 26

Number of Results

Pr
ec

is
io

n Borda Method

Naïve Ranking

Foot rule
Ranking

It can be observed that on an average, the
footrule distance ranking aggregation
method gives better precision for the given

set of results. Also, easily computable
Borda’s method does a good job when
compared to the Naïve ranking method.

6.4.2 Precision vs. Recall

Query: Alcoholism

0
0.2
0.4
0.6
0.8

1
1.2

0.
14

0.
28

0.
42

0.
56 0.

7

0.
84

0.
98

Recall

Pr
ec

is
io

n Naïve Ranker

Borda's
Ranker
Foot rule
ranker

Query: Gardening

0

0.5

1

1.5

0.
14

0.
28

0.
42

0.
56 0.
7

0.
84

0.
98

Recall

Pr
ec

is
io

n Naïve Ranker

Borda's
Ranker
Foot rule
ranker

A similar observation can be made with respect to the precision at a given recall for each of the
ranking strategies.

7.Problems encountered
 During the design of the advance
search interface, we realized that all the
options that normal search engines provide,
could not be made available because, each
search engine provides a different set of
advanced options.
 Some of the advanced search
options implemented in the different search
engines are tabulated below. There are other
advanced search options like file format,

language specific search which have not
been explored as part of this project.

Another major issue we faced was
finding an optimal algorithm for
implementing minimum cost bipartite
matching. We chose to implement the
Hungarian method, but in retrospect we
think other efficient algorithms would have
been better.

Feature Google MSN Altavista Tadpole
Conjunction Yes Yes Yes Yes
Disjunction Yes Yes Yes Yes
Negation Yes Yes Yes Yes
Phrase Search Yes Yes Yes Yes
Number of
results per page

No (for the API) No Yes No

8.Conclusion and Future Work
In the context of our project, we have
studied some trade-offs that are involved in
the design of meta-search engines. We have
observed that the computational complexity
of ranking algorithms used and performance
of the meta-search engine are conflicting
parameters. A compromise must be achieved
between these two, based on the perceived
applications and environment in which the
meta-search engine will be used.

Future work involves, incorporating more
number of search engines in the study,
studying the performance for the most
popular queries published by the various
search engines, incorporate local
kemmenization to e spam, to incorporate
methods for avoiding mirrored search
results.

Bibliography
[1] Cynthia Dwork, Ravi Kumar, Moni
Naor, D Siva Kumar, Rank Aggregation

Methods for the web. In proceedings of the
Tenth World Wide Web Conference, 2001.
[2]Hungarian Method
http://www.math.nus.edu.sg/~matcgh/MA32
52/lecture_notes/Hungarian.pdf
http://www.cob.sjsu.edu/anaya_j/HungMeth.
htm
[3]http://www.lib.berkeley.edu/TeachingLib
/Guides/Internet/MetaSearch.html
[4]K. Bharat and M. Henzinger, Improved
algorithms for topic distillation in a
hyperlinked environment.ACM SIGIR, pages
104--111, 1998.
[5]S. Chakrabarti, B. Dom, D. Gibson, R.
Kumar, P. Raghavan, S. Rajagopalan, and
A. Tomkins.
Experiments in topic distillation. Proc. ACM
SIGIR Workshop on Hypertext Information
Retrieval on the Web, 1998.
[6]H. P. Young. An axiomatization of
Borda's rule. Journal of Economic Theory,
9:43--52, 1974.

