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Abstract. Result merging is a key component in a metasearch engine. Once the 
results from various search engines are collected, the metasearch system merges 
them into a single ranked list. The effectiveness of a metasearch engine is closely 
related to the result merging algorithm it employs. In this paper, we investigate a 
variety of resulting merging algorithms based on a wide range of available in-
formation about the retrieved results, from their local ranks, their titles and 
snippets, to the full documents of these results. The effectiveness of these algo-
rithms is then compared experimentally based on 50 queries from the TREC Web 
track and 10 most popular general-purpose search engines. Our experiments 
yield two important results. First, simple result merging strategies can outper-
form Google. Second, merging based on the titles and snippets of retrieved re-
sults can outperform that based on the full documents. 

1. INTRODUCTION 

Metasearch engine is a system that provides unified access to multiple existing search 
engines. After the results returned from all used component search engines are col-
lected, the metasearch system merges the results into a single ranked list. The major 
benefits of metasearch engines are their capabilities to combine the coverage of mul-
tiple search engines and to reach the Deep Web. A recent survey [2] indicates that the 
Web has about 550 billion pages and only about 1% of them are in the Surface Web 
while the rest are in the Deep Web. The coverage of each search engine is limited. For 
example, Google, has indexed about 8 billion pages currently. This provides the basis 
for increasing search coverage via combining multiple search engines. Documents in 
the Deep Web are not directly crawlable but are searchable through special search in-
terfaces. Since metasearch engine utilizes other search systems, connecting to multiple 
Deep Web search engines is an effective mechanism to reach the Deep Web.  

Sophisticated metasearch engines also perform database selection, which is to 
identify the most suitable component search engines to invoke for a given user query. If 
a metasearch engine has a large number of component search engines, then it is very 
inefficient to pass each user query to every component search engine due to the addi-
tional time needed to invoke each search engine and to process the more results. In this 



 

case, database selection should be performed. In order to perform database selection, 
some information that can represent the main contents of each search engine is col-
lected in advance. When a user query is received, the representative information is used 
to estimate the usefulness of each search engine with respect to this query, which is then 
used to determine if a search engine should be used to process this query. The above 
usefulness will be called search engine score in this paper. Many methods for database 
selection exist (see [12] for a survey of some methods) but will not be discussed in this 
paper. Search engine scores are used by some result merging techniques. 

A straightforward way to perform result merging is to fetch the retrieved documents 
to the metasearch engine site and then to compute their similarities with the query using 
a global similarity function. This method is used in the Inquirus metasearch engine [10] 
as well in the approach in [20]. The main problem of this approach is that the user has to 
wait a long time before the results can be fully displayed. Therefore, most result 
merging techniques utilize the information associated with the search results as re-
turned by component search engines to perform merging [12]. The difficulty lies in the 
heterogeneities among the component search engines. For example, some component 
search engines may return a local ranking score (some kind of similarity value) for each 
result while some don’t. As another example, different search engines would rank the 
same set of documents differently since they adopt different ranking formulas and term 
weighting schemes.  

In this paper, we experimentally evaluate and compare seven different result 
merging algorithms, five of them are either newly proposed in this paper or revised 
from existing ones. The main contributions of this paper are two folds. First, it proposes 
several new algorithms that reflect some fresh ideas about result merging. Second, it 
provides extensive experimental results to evaluate the effectiveness of newly proposed 
algorithms and compare them with the existing methods. Two important conclusions 
are observed from our experimental results. Utilizing the titles and snippets associated 
with search results can achieve better effectiveness than using the full documents. 
Moreover, a good result merging algorithm can help a metasearch engine significantly 
outperform the best single search engine in effectiveness.  

The rest of the paper is organized as follows. Section 2 reviews various existing 
result merging approaches. In Section 3, we present five new result merging algo-
rithms. Section 4 provides the experimental results. Section 5 concludes the paper. 

2. RELATED WORK 

In the 1990s, most search engines reported the ranking scores of their search results. 
Therefore, many earlier techniques focused on normalizing the scores to make them 
more comparable across different search engines (e.g., [4, 16]). By this way, the results 
retrieved from different systems can be uniformly ranked by the normalized scores.  

Nowadays, very few search engines report ranking scores, but it is still possible to 
convert the local ranks into local ranking scores. Borda Count [1] is a voting-based data 
fusion method applicable in the context of metasearch. The returned results are con-
sidered as the candidates and each component search engine is a voter. For each voter, 
the top ranked candidate is assigned n points (assuming there are n candidates), the 



  

second top ranked candidate is given n – 1 points, and so on. For candidates that are not 
ranked by a voter (i.e., they are not retrieved by the corresponding search engine), the 
remaining points of the voter (each voter has a fixed number of points) will be divided 
evenly among them. The candidates are then ranked in descending order of the total 
points they receive. Several more complex schemes using ranks to merge results are 
reported in [5] but they need a larger number of results (say 100) to be retrieved from 
each search engine and they need substantial overlap among the retrieved results from 
different search engines to work effectively. 

In D-WISE [21], the local rank of a document (ri) returned from search engine j is 
converted to a ranking score (rsij) by using the formula:   

)*/(*)1(1 min jiij SmSrrs −−=  , (1) 

where Sj is the usefulness score of the search engine j, Smin is the smallest search engine 
score among all component search engines selected for this query, and m is the number 
of documents desired across all search engines. This function generates a smaller dif-
ference between the ranking scores of two consecutively ranked results retrieved from a 
search engine with a higher search engine score. This has the effect of ranking more 
results from higher quality search engines (with respect to the given query) higher. One 
problem of this method is that the highest ranked documents returned from all the local 
systems will have the same ranking score 1.  

Some approaches also take the search engine scores into consideration (e.g., [3, 7]). 
For example, the basic Borda Count method can be improved by adjusting the ranking 
score of a result by multiplying the points it receives with its source search engine’s 
usefulness score so that the results from more useful search engines for the query are 
more likely to be ranked higher. However, estimating the search engine score usually 
requires some sample data to be collected from each component search engine be-
forehand (e.g., [1, 13, 17]). Thus, this type of approaches cannot be applied to situations 
where a search engine joins a metasearch engine on the fly, such as in the case where 
customized metasearch engines are created on demand [19]. In our work, we focus on 
the result merging approaches without collecting any sample data in advance. 

Most of the current generation search engines present more informative search re-
sult records (SRRs) of retrieved results to the user. A typical SRR consists of the URL, 
title and a summary (snippet) of the retrieved document. As a result, the contents as-
sociated with the SRRs can be used to rank/merge results retrieved from different 
search engines. We are aware of only two works that utilize such SRRs. The work 
described in [8] is more about determining if a SRR contains enough information for 
merging so that the corresponding full document need not be fetched rather than a 
merging technique. The work reported in [13] is the most similar to our work in this 
paper. The available evidences that can be used for result merging are identified, such 
as the document title, snippet, local rank, search engine usefulness, etc. The algorithms 
based on different combinations of these evidences are proposed and their effectiveness 
is compared. However, their work is significantly different from ours in several as-
pects. First, while their metasearch system uses news search engines, we concentrate on 
general-purpose search engines. This makes our work more relevant to the current 
major metasearch engines as nearly all of them (e.g., Mamma.com, Dogpile.com, 
Search.com) use general-purpose search engines as their underlying components. 



 

Second, besides the title, snippet and the local rank of each retrieved document, some 
of our algorithms also consider the frequencies of query terms in each SRR, the order 
and the closeness of these terms, etc (see Section 3.2). On the other hand, publication 
date of each result is utilized in the algorithms in [13] but is not in ours because time is 
not as sensitive in the general web documents as in the news articles. Third, the datasets 
used are different. In [13], the dataset consists of the queries that are generated spe-
cifically for that work and the news items retrieved from the selected news search en-
gines using these queries, while the dataset in our work consists of the queries used for 
the TREC Web Track and the documents retrieved from the 10 major general-purpose 
search engines using these queries. Fourth, titles and snippets of SRRs are used dif-
ferently (different similarity functions are used) is these two approaches. Our experi-
mental results indicate that our approach outperforms the best approach in [13] (see 
Section 4 for details). 

Among all the proposed merging methods in [13], the most effective one is based on 
the combination of the evidences of document title, snippet, and the search engine 
usefulness. This method works as follows. First of all, for each document, the similarity 
between the query and its title, and the similarity between the query and its snippet are 
computed. Then the two similarities are linearly aggregated as this document’s esti-
mated global similarity. For each query term, its weight in every component search 
engine is computed based on the Okapi probabilistic model [14]. The Okapi model 
requires the information of document frequency (df) of each term. Since the df infor-
mation cannot be obtained in a metasearch engine context, the df of the term t in search 
engine j is approximated by the number of documents in the top 10 documents returned 
by search engine j containing term t within their titles and snippets. The search engine 
score is the sum of all the query term weights of this search engine. Finally, the esti-
mated global similarity of each result is adjusted by multiplying the relative deviation 
of its source search engine’s score to the mean of all the search engine scores. 

Major general purpose search engines have a certain amount of overlaps between 
them. It is very possible that for a given query, the same document is returned from 
multiple component search engines. In this case, their (normalized) ranking scores need 
to be combined. A number of fusion functions have been proposed to solve this prob-
lem and they include min, max, sum, average, CombMNZ, and other linear combination 
functions [6, 11, 18]. 

3. MERGING ALGORITHMS 

Algorithm 1: Use Top Document to Compute Search Engine Score (TopD) 

This algorithm can be considered as a variation of the method described in [21] (see 
Formula 1). Let Sj denote the score of search engine j with respect to Q. The method in 
[21] needs the document frequency of every term to be collected in advance, while the 
TopD algorithm uses the similarity between Q and the top ranked document returned 
from search engine j (denoted d1j ) to estimate Sj. The rationale is that, in general, the 
highest ranked document is the most relevant to the user query based on the search 
engine’s ranking criteria. Its content can reflect how “good” the search engine is with 



  

respect to the user query. Fetching the top ranked document from its local server will 
introduce some extra network delay to the merging process, but we believe that this 
delay is tolerable since only one document is fetched from each used search engine for 
a query 

For the similarity function, we tried both the Cosine function [15] and the Okapi 
function [14]. In Cosine function, the weight associated with each term in Q and d1j is 
the tf weight [15] (we also tried tf*idf weight and the results are similar). The similarity 
between query Q and d1j using Okapi function is the sum of the Okapi weight of each 
query term T. The formula is:  

qtfk
qtfk

tfK
tfkw

QT +
+

+
+

∑
∈ 3

31 *)1(**)1(* ,  

with 
5.0

5.0log
+

+−=
n

nNw  and )*)1((*1 avgdl
dlbbkK +−=  , 

(2) 

where tf is the frequency of the query term T within the processed document, qtf is the 
frequency of T within the query, N is the number of documents in the collection, n is the 
number of documents containing T, dl is the length of the document, and avgdl is the 
average length of all the documents in the collection. k1, k3 and b are the constants with 
values 1.2, 1,000 and 0.75, respectively. Since N, n, and avgdl are unknown, we use 
some approximations to estimate them. For avgdl, we used the average length of the 
documents we collected in our testbed (see Section 4.1), where the value is 1424.5 
(words). We use Google’s size to simulate N = 8,058,044,651. For each query term T in 
our testing queries, we submit it as a single-term query to Google and retrieve the 
number of documents returned as the value of n.  

As mentioned before, the ranking scores of the top ranked results from all used 
search engines will be 1 by using Formula 1. We remedy this problem by computing an 
adjusted ranking score arsij by multiplying the ranking score computed by Formula 1, 
namely rsij, by Sj. If a document is retrieved from multiple search engines, we compute 
its final ranking score by summing up all the adjusted ranking scores.  

Algorithm 2: Use Top SRRs to Compute Search Engine Score (TopSRR) 

This algorithm is the same as the TopD algorithm except that a different method is used 
to compute the search engine score. When a query Q is submitted to a search engine 
(say search engine j), the search engine returns the search result records (SRRs) of a 
certain number of top ranked documents on a dynamically generated result page. In the 
TopSRR algorithm, the SRRs of the top n returned results from each search engine, 
instead of the top ranked document, are used to estimate its search engine score. Intui-
tively, this is reasonable as a more useful search engine for a given query is more likely 
to retrieve better results which are usually reflected in the SRRs of these results. Spe-
cifically, all the titles of the top n SRRs from search engine j are merged together to 
form a title vector TVj, and all the snippets are also merged into a snippet vector SVj. 
The similarities between query Q and TVj, and between Q and SVj are computed 
separately and then aggregated into the score of search engine j: 
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where c1 = 0.5 and n = 10 are currently used in our work. Again, both the Cosine 
similarity function with tf weight and the Okapi function are used. In the Okapi func-
tion, the average document lengths (avgdl) of the title vector TVj and the snippet vector 
SVj are estimated by the average length of the titles and the snippets of the top 10 results 
on the result page. The values are 46.2 (words) and 163.6 (words), respectively. 

Algorithm 3: Compute Simple Similarities between SRRs and Query (SRRSim) 

Since each SRR can be considered as the representative of the corresponding full 
document, we may rank SRRs returned from different search engines based on their 
similarities with the query directly using an appropriate similarity function.  

In the SRRSim algorithm, the similarity between a SRR R and a query Q is defined as 
a weighted sum of the similarity between the title T of R and Q and the similarity be-
tween the snippet S of R and Q: 

)  ,(*)1(  )  ,(*),( 22 SQSimilaritycTQSimilaritycQRsim −+=  , (4) 

where, in the current implementation, c2 = 0.5. Again both the Cosine similarity func-
tion with tf weight and the Okapi function are tried. The avgdl of title and snippet used 
in the Okapi weight is set to be 5.0 and 17.6, respectively, which are estimated based on 
the SRRs of the collected documents in our testbed. (The reason that the average 
lengths of individual titles and snippets are longer than those can be derived from the 
numbers given in Algorithm 2, i.e., 5 > 46.2/10 and 17.6 > 163.6/10, is because some 
result pages contain less than 10 results.) If a document is retrieved from multiple 
search engines with different SRRs (different search engines usually employ different 
ways to generate SRRs), then the similarity between the query and each such SRR will 
be computed and the largest one will be used as the final similarity of this document 
with the query for result merging. 

Algorithm 4: Rank SRRs Using More Features (SRRRank)  

The similarity function used in the SRRSim algorithm, no matter it is the Cosine func-
tion or the Okapi function, may not be sufficiently powerful in reflecting the true 
matches of the SRRs with respect to a given query. For example, these functions do not 
take proximity information such as how close the query terms occur in the title and 
snippet of a SRR into consideration, nor does it consider the order of appearances of the 
query terms in the title and snippet. Intuitively, if a query contains one or more phrases, 
the order and proximity information has a significant impact on the match of phrases 
versus just individual terms. As an example, suppose a user query contains two terms t1 
and t2 in this order. Two documents d1 and d2 have the same length and they have the 
same numbers of t1 and t2 in it. In d1, t1 and t2 always occur together and t1 always 
appears in front of t2 while t1 and t2 are scattered all over in d2. The Cosine function or 



  

Okapi function will give d1 and d2 the same similarity value. However, intuitively, d1 
should be a better match to the query than d2. 

To better rank SRRs, we define five features with respect to the query terms. First, 
the number of distinct query terms appearing in the title and the snippet (NDT). Second, 
the total number occurrences of the query terms in the title and the snippet (TNT). 
These two features indicate the overlapping level between the query and the SRR. 
Generally speaking, the larger the overlap, the more likely they are relevant. Third, the 
locations of the occurred query terms (TLoc). There are three cases, all in title, all in 
snippet, and scattered in both title and snippet. This feature describes the distribution of 
the query terms in the SRR. In real applications, the title is more frequently associated 
with a returned result than the snippet (some search engines provide titles only). 
Therefore, title is usually given higher priority than the snippet. Fourth, whether the 
occurred query terms appear in the same order as they are in the query and whether they 
occur adjacently (ADJ). And finally, the window size containing distinct occurred 
query terms (WS). If all the distinct occurred query terms are located in the title or the 
snippet, it is the smallest number of consecutive words in the title or snippet that con-
tains at least one occurrence of each occurred distinct query term; otherwise, the 
window size is infinite. The last two features represent how close the query terms ap-
pear in the SRR. Intuitively, the closer those terms appear in the SRR, the more likely 
they have the same meaning as they are in the query. 

For each SRR of the returned result, the above pieces of information are collected. 
The SRRRank algorithm works as follows: first, all the SRRs are grouped based on the 
number of distinct query terms (NDT) in their title and snippet fields. The groups 
having more distinct terms are ranked higher. Second, within each group, the SRRs are 
further put into three sub-groups based on the location of the occurred distinct query 
terms (TLoc). The sub-group with these terms in the title ranks highest, and then the 
sub-group with the distinct terms in the snippet, and finally the sub-group with the 
terms scattered in both title and snippet. Finally, within each sub-group, the SRRs that 
have more occurrences of query terms (TNT) appearing in the title and the snippet are 
ranked higher. If two SRRs have the same number of occurrences of query terms, first 
the one with distinct query terms appearing in the same order and adjacently (ADJ) as 
they are in the query is ranked higher, and then, the one with smaller window size (WS) 
is ranked higher. After the above steps, if there is any tie, it is broken by the local ranks. 
The result with the higher local rank will have a higher global rank in the merged list. If 
a result is retrieved from multiple search engines, we only keep the one with the highest 
global rank. 

Algorithm 5: Compute Similarities between SRRs and Query Using More 
Features (SRRSimMF) 

This algorithm is similar to SRRRank except that it quantifies the matches based on 
each feature identified in SRRRank so that the matching scores based on different 
features can be aggregated into a numeric value. Consider a given field of a SRR, say 
title (the same methods apply to snippet). For the number of distinct query terms 
(NDT), its matching score is the ratio of NDT over the total number of distinct terms in 
the query (QLEN), denoted SNDT = NDT / QLEN. For the total number of query terms 



 

(TNT), its matching score is the ratio of TNT over the length of title (i.e., the number of 
terms in the title), denoted STNT = TDT / TITLEN. For the query terms order and adja-
cency information (ADJ), the matching score SADJ  is set to 1 if the distinct query terms 
appear in the same order and adjacently in the title; otherwise the value is 0. The 
window size (WS) of the distinct query terms in the processed title is converted into 
score SWS = (TITLEN – WS) / TITLEN (smaller WS leads to larger score). All the 
matching scores of these features are aggregated into a single value, which is the 
similarity between the processed title T and Q, using the following formula: 

)***(*1),( 321 TNTWSADJNDT SWSWSW
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This formula guarantees that titles containing more distinct query terms will have larger 
similarities.  

For each SRR, the similarity between the title and the query (Sim(T, Q)) and the 
similarity between the snippet S and the query (Sim(S, Q)) are computed separately first 
and then merged into one value as follows: 
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where TNDT is the total number of distinct query terms appeared in title and snippet. 
By multiplying by TNDT / QLEN, we guarantee that the SRR containing more distinct 
query terms will be ranked higher.  

A genetic algorithm based training method is used to determine the values of the 
parameters involved in this method. Among the testing queries, the odd numbered 
queries are used for the training. The optimal values of W1, W2, W3 and c3 found by the 
training are 0, 0.14, 0.41 and 0.2, respectively. W1 = 0 means that the order and adja-
cency information is not useful for improving result merging in Algorithm 5. One 
possible explanation for this is that due to the small length of each title and snippet, the 
terms are already sufficiently close to each other to identify their meanings. 

4. EXPERIMENTS 

4.1. Testbed 

The purpose of this work is to evaluate and compare different result merging algo-
rithms under the context of metasearch over the general-purpose search engines. So we 
select 10 most popular general-purpose search engines as the underlying component 
search engine. They are: Google, Yahoo, MSN, Askjeeves, Lycos, Open Directory, 
Altavista, Gigablast, Wisenut, and Overture. The reasons these search engines are se-
lected are: (1) they are used by nearly all the popular general-purpose metasearch en-
gines; (2) each of them has indexed a relatively large number of web pages; and (3) 
they adopt different ranking schemes. Even though we focus our work in the context of 



general-purpose search engines, the result merging algorithms we proposed in this 
paper are completely independent of the search engine type.  

2002 TREC Web Track topics are used as the queries to collect the testbed from the 
selected search engines. Each web topic contains 4 parts: an index number, a title, a 
description and a narrative (see Figure 1 for an example). 2002 TREC Web Track has 
50 topics indexed from 551 to 600. In this paper, for each topic, only the title part is 
used as a query to send to the search engines, because the titles are short, similar to most 
Internet queries submitted by real users. The average length of the titles of these 50 
topics is 3.06. The description and the narrative describe what documents should be 
considered relevant to the corresponding topic. This information is served as the 
standard criteria for us to judge the relevancy of the collected result documents. 
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<num> Number: 551 

<title> intellectual property 

<desc> Description: 

Find documents related to laws or regulations that protect intellectual property. 

<narr> Narrative: 

Relevant documents describe legislation or federal regulations that protect authors or composers

from copyright infringement, or from piracy of their creative work. These regulations may also be 

related to fair use or to encryption. 
  

 

Fig. 1. An Example TREC Query 

Each query is submitted to every component search engine. For each query and each 
arch engine, the top 10 results on the first result page are collected (some search en-
nes may return less than 10 results for certain queries). Totally there are 4,642 result 
cuments, excluding 42 broken links. This number corresponds to approximately 9.3 
cuments per query and per search engine. Information associated with each returned 
cord is collected, including the URL, title, snippet and the local rank. Besides, the 
cument itself is downloaded. The relevancy of each document is manually checked 
sed on the criteria specified in the description and the narrative part of the corre-
onding TREC query. The collected data and the documents, together with the rele-
ncy assessment result, form our testbed. The testbed is stored locally so it will not be 
fected by any subsequent changes from any component search engine. 

2 Evaluation Criteria 

ecause it is difficult to know all the relevant documents to a query in a search engine, 
e traditional recall and precision for evaluating IR systems cannot be used for 
aluating search/metasearch engines. A popular measure for evaluating the effec-
eness of search engines is the TREC-style average precision (TSAP) [10]. In this 
per, TSAP at cutoff N, denoted as TSAP@N, will be used to evaluate the effective-
ss of each merging algorithm:  
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where ri = 1/i if the i-th ranked result is relevant and ri = 0 if the i-th result is not 
relevant. It is easy to see that TSAP@N takes into consideration both the number of 
relevant documents in the top N results and the ranks of the relevant documents. 
TSAP@N tends to yield a larger value when more relevant documents appear in the top 
N results and when the relevant documents are ranked higher. For each merging algo-
rithm, the average TSAP@N over all 50 queries is computed and is used to compare 
with other merging algorithms. 

4.3 Result Analysis 

We first evaluated the average precision of each of the 10 component search engines 
used in our metasearching system. The results are reported in Table 1. Since for each 
query, we only collect the top 10 documents on the first result page from each search 
engine, we compute the effectiveness of each search engine at two N levels only, i.e., N 
= 5 and 10. It is easy to see that Google is the best performer, with Altavista and Yahoo 
close behind and others significantly behind.  

Table 1. Retrieval Effectiveness of Component Search Engines 

TSAP@N Seach Engine 
N = 5 N = 10 

Google 0.316 0.199 
Yahoo 0.308 0.194 
MSN 0.265 0.164 
Askjeeves 0.229 0.148 
Lycos 0.224 0.145 
Open Directory 0.091 0.051 
Altavista 0.315 0.199 
Gigablast 0.248 0.155 
Wisenut 0.289 0.177 
Overture 0.161 0.109 

Six algorithms are compared and the results are listed in the Table 2. In addition to 
the five algorithms described in Section 3, the full document fetching method 
(DocFetching, see Section 1) is also included. Both the Cosine function and the Okapi 
function are considered. For each algorithm to be evaluated, we compute its TSAP at 
different N levels, where N = 5, 10, 20, and 30.  

Table 2 shows that TopD and TopSRR algorithms are the least effective among all 
the merging algorithms evaluated. Their performances are close to that of the best 
single search engine (i.e., Google) for N = 5 and N = 10. This suggests that the local 
ranks of retrieved results do not contain enough information to achieve good merging.  

We also find a large margin of differences in effectiveness between Google and the 
other four algorithms, including full document fetching method (Okapi). Table 3 shows 



  

the effectiveness of three merging algorithms, SRRSim, SRRRank, SRRSimMF, when 
Google is not a component search engine (i.e., only the other 9 search engines are 
used). The exclusion of Google did not noticeably impact the performance, probably 
because the results from Google are also retrieved by other search engines collectively. 
This experimental result shows that, while it is widely recognized that metasearch en-
gines can increase search coverage, metasearching can improve the search effective-
ness over a single search engine as well. One reason why metasearching may achieve 
better effectiveness is because different individual search engines often yield different 
relevant documents and a good result merging algorithm can rank more of these rele-
vant documents higher than any single search engine. 

Table 2. Retrieval Effectiveness Comparison  
TSAP@N Algorithm N = 5 N = 10 N = 20 N = 30  

Cosine 0.297 0.185 0.112 0.081 TopD Okapi 0.318 0.198 0.116 0.084 
Cosine 0.314 0.194 0.112 0.084 TopSRR Okapi 0.311 0.193 0.115 0.084 
Cosine 0.366 0.228 0.137 0.098 SRRSim Okapi 0.377 0.235 0.140 0.100 

SRRRank 0.371 0.230 0.135 0.098 
SRRSimMF 0.381 0.238 0.140 0.100 

Cosine 0.271 0.177 0.108 0.080 DocFetching Okapi 0.338 0.217 0.131 0.094 

Table 3. Effectiveness without Using Google 

TSAP@N Algorithm 
N=5 N=10 N=20 N=30 

SRRSim(Okapi) 0.381 0.236 0.139 0.099 
SRRRank 0.370 0.230 0.134 0.097 
SRRSimMF 0.381 0.237 0.139 0.099 

Algorithms that perform merging based on the contents of SRRs (i.e., SRRSim, 
SRRRank, SRRSimMF) are the top performers among all the merging algorithms. They 
all outperform Google and the document fetching method significantly. It shows that 
the titles and snippets of SRRs contain good information about the contents of the 
corresponding documents. Overall, high quality snippets are generated by major gen-
eral-purpose search engines. Moreover, because good merging algorithms using SRRs 
only can significantly outperform the document fetching based method, there is no 
need to fetch the full documents of the retrieved results for result merging. This means 
that by using SRRs for merging, not only can the merging process be sped up signifi-
cantly, the effectiveness can also be improved, compared with using the full docu-
ments.  

It is somewhat surprising that using the full documents yielded lower effectiveness 
than using the SRRs, but a careful analysis reveals a valid explanation for this phe-
nomenon. Even though it is true that a full document has more information than its 



 

SRR, the information is not fully utilized by most similarity functions that are em-
ployed, including the Cosine function and the Okapi function. For example, neither of 
these two functions considers the proximity information of the query terms in a 
document. On the other hand, since titles and snippets are much shorter than the full 
documents, when they are used for similarity computations with a query, the proximity 
information is automatically taken into consideration. Furthermore, the search results 
returned by component search engines are obtained based on the full documents. In 
other words, the full documents have been used to gather the initial result sets and their 
SRRs are used for a second round of selection.  

The best algorithm reported in [13] (Rasolofo) is also a SRR-based method. The 
main idea of this algorithm is summarized in Section 2. It is similar to Algorithm 3 
(SRRSim) and the main differences between them are: (1) Rasolofo’s algorithm uses 
search engine scores (which are computed based on the Okapi model) to adjust the 
similarity for each SRR while SRRSim does not do that. (2) Rasolofo’s algorithm and 
SRRSim use different similarity functions to compute the similarity between a ti-
tle/snippet and a query. While SRRSim uses the Okapi function, Rasolofo’s algorithm 

uses 22 ||||*100000 FQNQW + , where NQW is the number of query words 
that appear in the processed field (e.g., title or snippet), and |Q| and |F| are the lengths of 
the query and the processed field, respectively; if the above similarity is zero for a re-
sult, it is substituted by the rank score of the result, which is defined to be 1000 – R, 
where R is the rank of the result given by the local search engine. We compared our 
three SRR-based algorithms, namely, SRRSim, SRRank and SRRSimMF, with Raso-
lofo. Since this method requires the information about the number of documents re-
turned by every local search engine for each query to compute its search engine score 
and Overture does not provide this information, the comparison with Rasolofo is based 
on the results returned from the other 9 search engines. The results are reported in Table 
4. It can be seen that all our algorithms outperform the Rasolofo’s algorithm. There are 
two possible reasons for this. First, the use of search engine scores to influence the 
ranking of SRRs may not be effective when high quality SRRs are generated by 
component search engines (more experiments are needed to confirm this conjecture). 
Second, the similarity function employed in Rasolofo’s algorithm for computing the 
similarities of titles and snippets with the query is not as good as the similarity func-
tions or ranking method employed by SRRSim (Okapi), SRRRank and SRRSimMF. Our 
query-by-query comparison between SRRSim and the Rasolofo’s algorithm shows that 
SRRSim is better for 24 queries, worse for 14 queries and tied with Rasolofo’s algo-
rithm for 12 queries.  

Table 4. Comparison with Rasolofo’s Approach 

TSAP@N Algorithm 
N=5 N=10 N=20 N=30 

SRRSim(Okapi) 0.377 0.235 0.140 0.101 
SRRRank 0.372 0.230 0.136 0.098 
SRRSimMF 0.380 0.237 0.139 0.100 
Rasolofo 0.347 0.217 0.131 0.095 



  

By comparing among the algorithms based on the contents of SRR, we found that 
the sophisticated ranking schemes employed by SRRRank and SRRSimMF fail to pay 
clear dividend over a much simpler scheme employed by SRRSim (Okapi). A possible 
reason is that because titles and snippets are already sufficiently short in terms of re-
lating the meanings of the query terms in the SRRs, which makes the additional 
fine-tuning unnecessary. 

5. CONCLUSIONS 

In this paper, we reported our study on how to merge the search results returned from 
multiple component search engines into a single ranked list. This is an important 
problem in metasearch engine research. An effective and efficient result merging 
strategy is essential for developing effective metasearch systems. We experimentally 
compared 7 merging algorithms that utilize a wide range of information available for 
merging, from local ranks by component search engines, search engine scores, titles 
and snippets of search result records to the full documents. Ten popular gen-
eral-purpose search engines and 50 TREC Web Track queries were used to perform the 
evaluation.  

Our experimental evaluations yielded several interesting results. First, simple, effi-
cient and easily implementable merging algorithms can outperform the best single 
search engine. This should help the cause of metasearch engine researchers/developers. 
Second, merging based on the titles and snippets of returned search result records can 
be more effective than using the full documents of these results. This implies that a 
metasearch engine can achieve better performance than a centralized retrieval system 
that contains all the documents from the component search engines. Third, a simply 
result merging algorithm can perform as well as more sophisticated ones. For example, 
the algorithm SRRSim that performs merging based on the weighted sum of the Okapi 
similarities of the title and snippet of each result with the query is as good as algorithms 
that take into consideration the order and proximity of query terms in the results.  

A possible reason why the proximity and adjacency information of query terms in 
the title and snippet did not help improve effectiveness is due to the failure to distin-
guish different types of adjacency/proximity conditions. For example, named entities 
and other types of phrases (noun phrases, dictionary phrase, complex phrases, etc.) may 
need to be identified and dealt with differently. We plan to investigate this issue further 
in the near future. 
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