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ABSTRACT 

The top web search result is crucial for user satisfaction with the 
web search experience. We argue that the importance of the 
relevance at the top position necessitates special handling of the 
top web search result for some queries. We propose an effective 
approach of leveraging millions of past user interactions with a 
web search engine to automatically detect “best bet” top results 
preferred by majority of users. Interestingly, this problem can be 
more effectively addressed with classification than using state-of-
the-art general ranking methods. Furthermore, we show that our 
general machine learning approach achieves precision comparable 
to a heavily tuned, domain-specific algorithm, with significantly 
higher coverage. Our experiments over millions of user 
interactions for thousands of queries demonstrate the 
effectiveness and robustness of our techniques. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Search process, 
Relevance feedback, Information filtering; H.3.3 [Online 
Information Services]: Commercial services, Web-based 
services 

General Terms 
Algorithms, Measurement, Design. 

Keywords 
Web search ranking, user behavior mining, web usage mining. 

1. INTRODUCTION 
Web search users are inexorably drawn to the top search result, 
often irrespective of the relevance of the document for the query. 
Furthermore, recent studies showed that users often do not 
examine lower-ranked results [12]. Hence, relevance at the top 
rank of the returned result list disproportionately affects user 
experience in web search.  

The problem of selecting a good top result has been popularized 
by Google with the “I am feeling lucky!” button that 

automatically returns the top ranked document instead of a result 
list. We believe that for a large class of queries, we can 
automatically determine whether to propose such a “best bet” 
result, and what the result should be, by mining past user 
interactions with the search engine. 

Specifically, we focus on the important class of queries usually 
referred to as “Navigational” [5]. These queries are submitted in 
order to get to a specific website without typing the actual URL. 
For these queries, the top result is often the destination a user is 
looking for. Clearly, many queries do not have such “best bet” 
results, and part of the problem is to identify the queries for which 
providing a specialized “best bet” result would help.  

We consider different approaches for this problem. The natural 
and intuitive approach is to simply improve the ranker, e.g., by 
tuning the ranker to optimize accuracy of all top result. A related 
approach is to incorporate information from past user behavior to 
improve the overall ranking for previously submitted queries [1, 
2]. A practical and effective variation of this general approach is 
to analyze past user behavior to propose “best bet” URLs using a 
set of rules created by a domain expert. Finally, and this is the 
approach we propose, we could automatically learn to detect “best 
bet” results and appropriate queries simultaneously by mining the 
past interactions with the search engine. Specifically, our 
contributions include: 

• An investigation into general problem of representing user 
behavior such as to make it particularly amenable for 
suggesting the “best bet” search results (Section 3) 

• Effective methods for incorporating user behavior into ranking 
and classification of search results (Section 4). 

• Large-scale evaluation of the alternatives over millions of user 
interactions and thousands of queries (Section 6). 

We review the related work in Section 7, and summarize our 
findings in Section 8, which concludes the paper. 

2. THE IMPORTANCE OF TOP RESULTS 
As we discussed, the top search result is disproportionably more 
important than the lower-ranked results. Consider a frequent 
query “bank of america” that is submitted to our search engine 
(Figure 2.1). This query is typically considered “Navigational” 
(i.e., a user wants to be directed to the appropriate website). Such 
queries account for nearly 30% of unique queries submitted [5, 
19]), and an even larger fraction of queries if we consider the 
frequency of each query. As Figure 2.2 shows, the overwhelming 
majority of users prefer the top result (The official Bank of 
America website), which they might use to perform transactions 
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or navigate to specific areas of the site. In this case, the ranking is 
perfect, in the sense that the top result satisfies the search need for 
more than 90% of the users. This example suggests that while it is 
important to return relevant results in general, returning a correct 
result in the top position for navigational queries can significantly 
improve the user experience.  
 

 
Figure 2.1: Sample set of results for query “bank of America”. 
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Figure 2.2: Click frequency distribution for query “bank of 
america”, with the top result (www.bankofamerica.com) 
receiving more than 90% of all clicks. 
 

Furthermore, the top result in web search has another important 
property: users have a strong bias towards clicking on the top 
result. Figure 2.3 shows the relative clickthrough frequency for 
more than 120,000 searches performed for 3,500 queries 
randomly sampled from query logs over a three week period. The 
queries were sampled across all query frequency ranges, to 

include a representative sample of both rare and frequent queries. 
The aggregated click frequency at result position p is calculated 
by first computing the frequency of a click at p for each query 
(i.e., approximating the probability that a randomly chosen click 
for that query would land on position p). These frequencies are 
then averaged across queries and normalized so that relative 
frequency of a click at the top position is 1. The resulting 
distribution agrees with previous observations about the bias in 
clicking top ranked results – users click more often on results that 
are ranked higher. Furthermore, there is a large bias towards the 
top result – the click frequency is nearly twice higher than on the 
next (second) result. 
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Figure 2.3: Relative click frequency for top 10 result positions 
over 3,500 queries and 120,000 searches. 

This suggests that users may have such a strong bias towards the 
top result that they may click on the top result even if it is not 
relevant. Figure 2.4 reports the distribution of clicks on the 
relevant and non-relevant documents for these queries, which will 
motivate our emphasis on getting the top result correctly. 
Specifically, we report the aggregated click distribution for 
queries with varying Position of Top Relevant document (PTR). 
For example, for queries with top relevant result in position 3, the 
relative click frequency on the non-relevant results at position 1 is 
higher than click frequency on the relevant results in position 3. 
This indicates that users often click on the top result without 
considering the relevant results ranked below the top position. 
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Figure 2.4: Relative click frequency for queries with varying 
PTR (Position of Top Relevant document). 



 

For these reasons of impact on the web search experience, we 
specifically focus on the problem of returning an excellent “best 
bet” result in the top position when appropriate – i.e., when an 
overwhelming majority of users had exactly this result in mind 
when issuing a query. Specifically, our goal is to identify pairs of 
queries and corresponding results <q,u> such that past user 
interactions with the query q clearly indicate that users 
overwhelmingly prefer the result u over all other results for this 
query. Note that this problem is different from generic ranking in 
the sense that we do not propose a “best bet” result for every 
query, but rather for only the queries for which we can 
confidently predict a likely correct candidate. Furthermore, not all 
queries have one “best bet” result that could be returned. For 
example, a query “data mining research” does not have a best bet 
result, as there may be multiple relevant results and sub-areas of 
interest. 
It is often difficult to directly understand the user intent. 
However, we can observe, and mine, the past behavior of users 
interacting with the search results as a proxy for understanding 
the user intent and preferences for the results. In the next section 
we describe how we represent the user behavior, to be used by 
machine learning-based and domain specific algorithms 
introduced in Section 4. 
 

3. MINING USER BEHAVIOR 
Although user implicit feedback (e.g., clicks) contains much 
noise, we believe it also contains valuable information on what 
users like. Our goal is to accurately interpret the noisy user 
feedback obtained by tracing user interactions with the search 
engine. Interpreting implicit feedback in real web search setting is 
not an easy task. We characterize this problem in detail in [1,2], 
where we motivate and evaluate a wide variety of models of 
implicit user activities. The general approach is to represent user 
actions for each search result as a vector of features, and then 
train a ranker on these features to discover behavior patterns 
indicative of relevant (and non-relevant) search results. We now 
briefly summarize our features and model, and the machine 
learning approach of interpreting user feedback (Section 3.2).  

3.1 Representing User Actions as Features 
We model observed web search behaviors as a combination of a 
“background” component (i.e., query- and relevance-independent 
noise in user behavior, including positional biases), and a 
“relevance” component (i.e., query-specific behavior indicative of 
the relevance of a result to a query). We design our features to 
take advantage of aggregated user behavior. The feature set is 
comprised of directly observed features (computed directly from 
observations for each query), as well as query-specific derived 
features, computed as the deviation from the overall query-
independent distribution of values for the corresponding directly 
observed feature values. 
A sample of features that we use to represent user interactions 
with web search results is listed in Table 3.1. This information 
was obtained via selective instrumentation from queries submitted 
to our search engine. We include the traditional implicit feedback 
features such as clickthrough counts for the results, as well as our 
novel derived features such as the deviation of the observed 
clickthrough number for a given query-URL pair from the 
expected number of clicks on a result in the given position.  
 

Presentation Features 
ResultPosition Position of the URL in Current ranking 
QueryTitleOverlap Fraction of query terms appearing in result Title 
QueryURLOverlap Fraction of query terms appearing in the URL 
QuerySummaryOverlap Fraction of query terms in result summary 
Clickthrough and Browsing  features 
TimeToClick Seconds between query and click on the URL 
TimeToFirstClick Seconds between query and click on any result 
ClickFrequency Fraction of clicks for this query on this URL 
ClickDeviation Deviation from expected click frequency 
IsNextClicked 1 if there is a click below, 0 otherwise 
IsPreviousClicked 1 if there is a click above, 0 otherwise 
IsClickAbove 1 if there is a click above, 0 otherwise 
IsClickBelow 1 if there is click below, 0 otherwise 
TimeOnPage Result page dwell time 
CumulativeTimeOnPage Cumulative time for all subsequent pages visited
Table 3.1: A sample of features used to represent user 
behavior history for each query and result URL pair. 
 

 

The features listed in Table 3.1 are not all the features used, but 
give a good idea of the variety and the type of user behavior that 
can significantly enrich the ranking model. We now briefly 
overview our general approach for deriving a user behavior 
model. We describe the actual methods in detail in Section 4. 
 

3.2 Deriving a User Behavior Model 
To learn to interpret the observed user behavior, we correlate user 
actions (e.g., the features in Table 3.1) with the explicit user 
judgments for a set of training queries. We find all the instances 
in our session logs where these queries were submitted to the 
search engine, and aggregate the user behavior features for all 
search sessions involving these queries.   
Each observed query-URL pair is represented by the superset of 
features in Table 3.1, with values averaged over all search 
sessions, and assigned one of the two labels, 1 or “best bet” and 0 
or “not best bet”, as assigned by explicit relevance judgments.  
These labeled feature vectors are used as input to the machine 
learning and domain-specific algorithms, described next.  
 

4. DISCOVERING BEHAVIOR PATTERNS 
Describing user behavior as a set of features in the user behavior 
“space” has an important advantage: instead of writing domain-
specific algorithms to interpret behavior, we can use general 
machine learning methods that can be trained given labeled 
examples of the behavior feature vectors for a given result, and 
the target relevance label for the result. We first describe a 
general machine learning framework for automatically tuning a 
web search ranking function given labeled examples for a given 
feature set. We then briefly describe how the behavior features 
can be incorporated into ranking directly (Section 4.2). We then 
describe a contrasting domain-specific approach developed for 
selecting the best top result by interpreting past user interactions 
(Section 4.3). Finally, we introduce our general machine learning 
approach for the top-result problem that treats it as a binary 
classification problem (Section 4.4). The methods described in 
this section will be empirically evaluated in Sections 5 and 6.  



 

4.1 Learning to Rank Web Search Results  
A key aspect of our approach is exploiting recent advances in 
machine learning, namely trainable ranking algorithms for web 
search and information retrieval (e.g., [6, 11]). In our setting, 
explicit human relevance judgments (labels) are available for a set 
of web search queries and results. Thus, an attractive choice to 
use a supervised machine learning technique is to learn a ranking 
function that best predicts relevance judgments.  
RankNet [6] is one such algorithm.  It is a neural net tuning 
algorithm that optimizes feature weights to best match explicitly 
provided pairwise user preferences. RankNet uses a probabilistic 
cost function that is robust to some noise in the labeling. While 
the specific training algorithms used by RankNet are beyond the 
scope of this paper, it is described in detail in [6] and includes 
extensive evaluation and comparison with other ranking methods. 
An attractive feature of RankNet is both train- and run-time 
efficiency – runtime ranking can be quickly computed and can 
scale to the web, and training can be done over thousands of 
queries and associated judged results. 
We use a 2-layer implementation of RankNet in order to model 
non-linear relationships between features. Furthermore, RankNet 
can learn with many (differentiable) cost functions, and therefore 
can automatically learn a ranking function from human-provided 
labels, an attractive alternative to heuristic feature combination 
techniques. Hence, we will also use RankNet as a generic ranker 
over the user behavior features described above.   

4.2 Ranking with Behavior Features 
Modern web search engines rank results based on a large number 
of features, including content-based features (i.e., how closely a 
query matches the text or title or anchor text of the document), 
and query-independent page quality features (e.g., PageRank of 
the document or the domain). In most cases, automatic (or semi-
automatic) methods are developed for tuning the specific ranking 
function that combines these feature values.  
Hence, a natural approach is to incorporate implicit feedback 
features directly as features for the ranking algorithm. During 
training or tuning, the ranker can be tuned as before but with 
additional features. At runtime, the search engine would fetch the 
implicit feedback features associated with each query-result URL 
pair. This method is described in detail in [2], and has been shown 
to significantly improve the search result relevance. This model 
requires a ranking algorithm to be robust to missing values: a 
large fraction of web search queries are unique, with no previous 
implicit feedback available.  
However, for the frequent, navigational queries that we target in 
this paper, past user interactions are often available, suggesting 
using intuitive rules defined over the behavior features to identify 
the most promising “best bet” results. 

4.3 Domain-Expert Analysis of User Behavior  
We can have search domain experts analyze user query logs 
including user behavior information, and develop ad hoc 
algorithms and rules to create best bets. In this paper, we refer this 
approach to DomainAlgorithms.  
Depending on the quality and quantity of user logs processed, the 
experience of the experts, as well as tools available, the quality of 
the best bet results generated by DomainAlgorithms will vary. 
This approach works in practice, and, as we will show 

empirically, exhibits high accuracy. One advantage of 
DomainAlgorithms is that it does not rely on labeled training 
examples. Nevertheless, as the domain expert needs to analyze the 
logs and implement the algorithms and evaluate the accuracy, the 
resulting algorithms require significant effort to develop.  As we 
only use DomainAlgorithms for comparison purposes, we do not 
describe the details of the rules constructed and incorporated into 
the system. 

4.4 Building a Classifier to Detect “Best Bets” 
While the algorithms above are likely to have high precision, they 
would have to be re-tuned and expanded as user behavior patterns 
change, as general ranking improves, and as spammers figure out 
ways to attack the rankings. In contrast, a more general trainable 
data mining approach is likely to be more robust and will discover 
regions in user behavior space that may not be easily engineered 
or even detected by manual analysis and algorithm engineering. 
We model the problem as binary classification, i.e., learning to 
partition the user behavior space into regions where a result looks 
like a “best bet” or not in the past user behavior. The classifier is 
trained on user behavior feature vectors (Section 3.1) each with 
associated label derived from explicit relevance ratings. A 
classifier is then trained to partition the behavior feature space 
into regions where a new result is likely to be a “best bet” because 
users interact with the result similarly to known “best bet” results 
(i.e., map to close positions in the user behavior space). 
We experimented with different classifiers (e.g., SVM 
implementations) and settled on a decision tree classifier, as the 
most intuitive and easily interpretable and also with highest 
accuracy on the development set. Additionally, a decision tree 
model also makes it easy to extract rules that could be examined 
and visualized to develop insights into user behavior. Specifically, 
we use the WinMine implementation of deriving decision trees 
from Bayesian networks, developed by Chickering [7] and 
publicly available for download1.  

5. EXPERIMENTAL SETUP 
The experiments we report were all done on real data and with 
real user feedback datasets. The reranking experiments were 
performed off-line – i.e., by comparing the output of the systems 
with previously labeled relevance judgments for the search 
results. The methods compared are described next in Section 5.1 
and are evaluated on the datasets in Section 5.2 using metrics in 
Section 5.3. These settings will be used for reporting the 
experimental results in Section 6. 

5.1 Methods Compared 
As we discussed the possible approaches to “best bet” result 
generation include web search ranking over document and query 
features, ranking that incorporates user feedback, and two 
methods specifically designed for selecting top search results: 

• RankNet: A state of the art web search ranking system trained 
to order query results using features such as term match, match 
positions, web topology features, and hundreds of other 
features describing the similarity of a query to the candidate 
search result document (Section 4.1) 

                                                                 
1 http://research.microsoft.com/~dmax/WinMine/Tooldoc.htm 



 

• RankNetExtended: The same RankNet system as above, but 
with a richer feature set that incorporates the past user behavior 
features into the ranking process (Section 4.2, reference [2]) 

• DomainAlgorithms: Algorithms or rules developed based on 
domain expertise and selective query log and user interaction 
analysis  (Section 4.3)  

• BehaviorClassifier: The general classification-based method 
trained on examples of “positive” and “negative” user behavior 
feature vectors for automatically discovering patterns in 
behavior that indicate a “best bet” result (Section 4.4) 

The methods described above span the range from algorithms 
specifically designed for the “best bet” problem to general 
ranking and classification algorithms that were automatically 
tuned for the task. As we will show, the classification approach 
can rival the heavily engineered algorithms in accuracy, while 
also capturing cases not covered by manually developed 
algorithms. 

5.2 Datasets 
An important contribution of our work is applying implicit 
feedback techniques to important problems with real, noisy data 
collected “in the wild” by real users interacting with a web search 
engine. The actual ranking and evaluation experiments were done 
off-line, i.e., using a static set of queries, results, and explicit 
relevance judgments for the query results.  
The judgments were collected by asking annotators to associate a 
relevance label for each result retrieved in response to a randomly 
selected set of queries from the search engine query logs. The 
queries were sampled by token without replacement, i.e., frequent 
queries have a high chance to be included, but the sample also 
contains a large number of “tail”, or less-frequent queries.  
For these experiments, we used 7,000 labeled queries that also 
had at least one of the results clicked (i.e., had a minimum of user 
interactions recorded). The user behavior data was collected over 
the period of 8 weeks, which contained the total of 1.2 million 
search requests for the queries considered, and the total of nearly 
10 million user interactions with results of these search requests. 
The queries and associated feature sets were split three-fold for 
2/3 train/test split, and a three-fold cross validation was 
conducted. The training and test sets were disjoint, randomly split 
by query. On average the training set contained 4,600 queries and 
12,800 labeled URLs, and the test set contained 2,300 queries and 
6,400 URLs with explicitly judged relevance labels and were 
clicked on at least once.  

5.3 Evaluation Methodology and Metrics 
The “best bet” result setting as introduced in Section 2 is 
essentially a standard information retrieval problem, except that 
we allow the system to avoid making a bet for “hard” queries, in 
which case the overall system backs off to the generic ranking of 
the results. Therefore, we use standard information retrieval 
metrics of Precision at 1 and Recall at 1 (see Salton et al. [20]), 
defined below, to compare the approaches.   

Precision: the fraction of the queries for which a system proposed 
a “best bet result”, where the proposed result was judged to be 
a “best bet” for the respective query.  

Recall: the fraction of the queries with at least one “best bet” 
result that were successfully returned by a system.  

The precision and recall metrics can also be combined into a 
single number (e.g., F-measure), but for this evaluation we felt it 
was important to explicitly consider the trade offs made between 
optimizing the recall and precision of a “best bet” system. 
 

6. RESULTS 
We now experimentally compare the methods described in 
Section 5.1 over the datasets and metrics of the previous section. 
The main results are summarized in Table 6.1.  
The generic ranking methods are substantially outperformed by 
the methods specifically designed for the “best bet” problem. The 
precision of RankNet on document and query features is 0.239. 
Incorporating user behavior features into ranking boosts precision 
by 10% absolute to 0.331 (for 38.5% precision gain). However, a 
classifier specifically trained to recognize user behavior for “best 
bet” results achieves precision of 0.753 (at slightly lower recall), 
for precision gain of over 216%.  Interestingly, the general 
classification-based method performs nearly as well as the heavily 
tuned set of domain-specific algorithms, but with much higher 
recall (i.e., coverage): BehaviorClassifier recognizes almost 30% 
of the “best bet” results, while DomainAlgorithms rules are able 
to detect less than 20% of the queries with “best bet” results. 
 

Method Precision  Recall Precision Gain (%) 
RankNet 0.239 0.239 - 
RankNetExtended 0.331 0.331 38.5% 
BehaviorClassifier 0.753 0.299 216% 
DomainAlgorithms 0.758 0.185 218% 

Table 6.1: Precision and Recall of the top results for 
RankNet, RankNetExtended, BehaviorClassifier, and 
DomainAlgori-thms methods over 2,300 test queries. 

An important reason for the difference in precision exhibited by 
the ranking methods is that a ranker must always propose a URL 
for every query, whereas the BehaviorClassifier and 
DomainAlgorithms only propose a result when past user behavior 
indicates a promising candidate. Furthermore, the evaluation is in 
a sense different from standard in that a reasonable, but not 
perfect result would still be considered success in general ranking 
evaluation, whereas in this evaluation we only consider a “best 
bet” result (i.e., one that is likely to satisfy completely the 
majority of users) to be relevant. 
In summary, our results show a drastic improvement in precision 
for the specialized “best bet” methods over general ranking 
approaches, and also show that a general classification approach 
can rival and outperform heavily-tuned domain-specific 
algorithms with proper feature representation and training. 

6.1 Discussion 
Before we discuss the implications of our results, we first present 
some intuitions into what the behavior models automatically 
discovered by classifying past user behavior. A decision tree 
fragment and a corresponding rule for one of the leaf nodes is 
shown in Figure 6.1. In our implementation, the label of “1” 
indicates a “best bet” search result, and label of “0” indicates a 
less relevant result. Hence, the leaves of the tree with high 
probability of the “1” label are the regions of the behavior space 
most likely to contain “best bets”.   



 

The splits in the decision tree, as translated into rules, are often 
intuitive in retrospect, but would have been difficult to design in 
advance. For example, the sample rule in Figure 6.1 states that a 
“best bet” result is likely with probability of 0.76 if there is large 
overlap of query words and with the domain of the result, there is 
a large number of clicks on the result, and the users take less than 
37 seconds on average to click on the result. 

 
Figure 6.1: Example rule (leaf) of decision tree for selecting a 
top result based on past user behavior patterns. 
 

6.2 Practical Impact 
While the recall of returning an excellent “best bet” result for less 
than 30% of unique queries may seem small, in terms of user 
experience the effect is more significant. The queries for which 
there is sufficient amount of user interaction to make a good bet 
are also more frequent – in other words, in terms of query 
volume, these queries cover far more than 30%. Hence, a 
significant improvement of the top 1 result of the magnitude 
described noticeably improves the actual web search user 
experience.  
Furthermore, the overlap of the “best bets” generated via 
classification with the general ranking methods is small. Hence, 
the improvement seen in isolation is expected to persist in the 
“live” setting where a classifier-based system might back-off to 
the ranking method if there is no top result to propose with high 
confidence based on past user behavior.  

Using a general classification method also has important benefits. 
As users behavior evolves, and as click fraud and spam operators 
become more sophisticated, it would be difficult to maintain and 
update the rules and the code in the domain-specific algorithms. 
In contrast, our classification approach is easily amenable to 
updates (i.e., can be retrained over time and with new user 
behavior data over existing relevance judgments). Hence, the 
impact of our approach goes beyond the specific relevant 
improvements (which are substantial). In summary, we presented 
and empirically validated a flexible and effective approach to 
mining past user behavior data to suggest “best bet” results for 
appropriate queries. 
 

7. RELATED WORK 
Ranking search results is a fundamental problem in information 
retrieval and web search. Most common approaches primarily 
focus on similarity of query and a page, as well as the overall 
page quality [3, 20]. However, with increasing popularity of 
search engines, implicit feedback (i.e., the actions users take when 
interacting with the search engine) can be used to improve the 
rankings. Implicit relevance measures have been studied by 
several research groups. An overview of implicit measures is 
compiled in Kelly and Teevan [13]. This research, while 
developing valuable insights into implicit relevance measures, 
was not applied to improve the ranking of web search results in 
realistic settings.  
Closely related to our work, Joachims [11] collected implicit 
measures in place of explicit measures, introducing a technique 
based entirely on clickthrough data to learn ranking functions. 
Fox et al. [9] explored the relationship between implicit and 
explicit measures in Web search, and developed Bayesian models 
to correlate implicit measures and explicit relevance judgments 
for both individual queries and search sessions. This work 
considered a wide range of user behaviors (e.g., dwell time, scroll 
time, reformulation patterns) in addition to the popular 
clickthrough behavior. However, the modeling effort was aimed 
at predicting explicit relevance judgments from implicit user 
actions and not specifically at classifying “best bets” via user 
behavior. Other studies of user behavior in web search include 
Lee et al. [14] and Rose et al. [19], but were not directly applied 
to improve ranking.  
More recently, Joachims et al. [12] presented an empirical 
evaluation of interpreting clickthrough evidence. By performing 
eye tracking studies and correlating predictions of their strategies 
with explicit ratings, the authors showed that it is possible to 
accurately interpret clickthroughs in a controlled, laboratory 
setting. Unfortunately, the extent to which previous research 
applies to real-world web search is unclear. At the same time, 
while recent work (e.g., [21, 22, 24]) on using clickthrough 
information for improving web search ranking is promising, it 
captures only one aspect of the user interactions with web search 
engines, and has not investigated the effectiveness of these 
methods for ranking in the production settings. We build on 
existing research to develop robust user behavior interpretation 
techniques for the real web search setting. Instead of treating each 
user as a reliable “expert”, we aggregate information from 
multiple, unreliable, user search session traces. To the best of our 
knowledge, ours is the first work in the literature on effectively 
identifying “best bet” results in tandem with identifying the 
appropriate queries using past user behavior patterns. 



 

8. CONCLUSIONS 
The accuracy of the top result in web search is an important and 
challenging problem. We have empirically showed the 
effectiveness of exploiting the “wisdom of crowds” as features in 
our general learning framework, to select the most promising top 
result for a large and important class of web search queries.  
Our large scale experiments on real user behavior data and 
queries demonstrate a significant improvement in accuracy due to 
using general user behavior models, with dramatic accuracy 
improvements when explicitly focusing on the “best bet” result 
identification problem. Specifically, we showed that the best bet 
problem in information retrieval can be more effectively solved 
using classification rather than the standard ranking approach.  
Furthermore, we demonstrated the value of a general data mining 
and machine learning approach that achieves accuracy 
comparable to a domain-specific heavily engineered solution. Our 
general BehaviorClassifier method achieves significantly higher 
recall than the manually engineered solution (i.e., coverage of 
queries for which best bet results can be accurately proposed). As 
we discussed, the classification framework we developed is more 
amenable to easy maintenance and updating than an engineered 
approach, allowing our system to be easily tuned with evolving 
user behavior patterns and query distributions. 
An important side effect of our approach is a general way of 
classifying user behavior as a first step towards better 
understanding user intent. So far, by construction, our focus was 
on navigational queries – i.e., queries for which a clear and 
obvious “best bet” results exist. However, many common queries 
are not navigational [5], and there may be multiple results for a 
user to examine to get all the necessary information. Our behavior 
classification method allows us to automatically detect these 
different types of behavior (e.g., Navigational vs. other) and 
hence can help identify the user intent even if there is no “best 
bet” result that can be returned. A promising direction is how to 
extend and apply these models to other types of queries, and how 
to improve user behavior modeling techniques to further improve 
the web search experience. 
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