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Abstract— Recent advances in graph-based search tech-
niques derived from Kleinberg’s work [1] have been impres-
sive. This paper further improves the graph-based search al-
gorithm in two dimensions. Firstly, variants of Kleinberg’s
techniques do not take into account the semantics of the
query string nor of the nodes being searched. As a result,
polysemy of query words cannot be resolved. This paper
presents an interactive query scheme utilizing the simple
web taxonomy provided by the Open Directory Project to
resolve meanings of a user query. Secondly, we extend a re-
cently proposed personalized version of the Kleinberg algo-
rithm [3]. Simulation results are presented to illustrate the
sensitivity of our technique. We outline the implementa-
tion of our algorithm in the Persona personalized web search
system.

Keywords— taxonomy, tree coloring, HITS algorithm,
graph-based web search. 1 2

I. Overview

Search engines index large numbers of documents and
let users query desired documents. However, most search
engines are not tailored to meet individual user prefer-
ences. [6] noted that almost half of the documents re-
turned by search engines are deemed irrelevant by their
users. There are several aspects to the problem. First
is the problem of synonyms and homonyms. Synonyms
are two words that are spelt differently but have the same
meaning. Homonyms are words that are spelt the same but
have different meanings. Without prior knowledge, there is
no way for the search engine to predict user interest from
simple text based queries. Secondly, search engines should
be deterministic in that it should return the same set of
documents to all users with the same query at a certain
time. Therefore it is inherent that search engines are not
designed to adapt to personal preferences.
Current information retrieval and data mining research

tries to enhance user’s web experience from several direc-
tions. One direction is to create a better structural model
of the web, such that it can interface more efficiently with
search engines. Another approach is to model user behav-
ior as to predict users’ interests better.
Along the lines of the former are efforts at better defining

the meaning of queries themselves. TheWordnet project at
Princeton University is an online lexical reference system
that organizes English words into synonym sets [7]. A sim-
ilar approach is to build a taxonomy of words. A taxonomy
comprises of a tree structure in which a word belongs to
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a certain node, each with parents and children. A node’s
parent serves a general category that encompasses all of its
children. A node may have children that are sub-categories
of itself. An example of such word taxonomies are the
Open Directory Project [http://dmoz.org] and the Magel-
lan hierarchy [http://magellan.excite.com]. While these ef-
forts classifies document content from a person’s point of
view, other projects, namely OIL (Ontology Interchange
Language), DAML (DARPA Agent Markup Language), and
Haystack [4], embeds meta data inside documents to help
machines create semantic structures.
Along the lines of the latter approach, various research

in data mining and knowledge representation have built
models to record user interest and predict user behavior.
Ultimately, these user models interface with a system so as
to give it a priori knowledge regarding user preferences.
Clearly, work in user profiling is closely related to build-

ing better personalized systems. Different methods of gath-
ering user data is often coupled with various personaliza-
tion systems. We found that the combinations that are
available in the context of personalized search are unsatis-
factory. We propose a novel approach in building a better
system with the following. First, we extend existing theory
with regards to personalized search. Second, we propose to
model users’ interest using an interactive query scheme uti-
lizing the web taxonomy provided by the Open Directory
Project.
To support our argument, we have built an implementa-

tion of a personalized search engine. The system wraps a
personalization module onto an existing search engine, and
refines search results using the proposed extension of the
graph based algorithm.
At its core, the proposed system utilizes a taxonomy of

user interest and disinterest. We use a tree coloring method
to represent user profiles. Visited nodes are ’colored’ by
the number of time it is visited, whether the user rate it as
positive or negative, and URLs that it associates to.
In addition, we run sets of controlled experiments to an-

alyze the performance of each of the existing variants. The
experimental results verify our predictions and confirm that
the proposed extension performs better.
We offer a roadmap of this document. Section II outlines

related work in personalized web browsing and reviews ex-
isting methods using graph based search algorithms. Sec-
tion III describes our extension to existing theory. Section
IV describes the user modeling technique. Section V out-
lines the implementation of Persona. Section VI describes
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the simulation results. We conclude in section VII with
some direction for future work.

II. Related Works

A. Examples of personalization applications

Personalization applications cover a range of spectrum.
At one end of the spectrum, we have filtering systems,
which filter input from an information resource; from the
input, information of possible interest are marked. An ex-
ample of such a filtering system, SmartPush [8] combines
several novel ideas together. The system filters through
information using semantic meta data embedded in news
articles. In addition, it builds a user profile using a hier-
archical concept model. For example, under the category
news, there are the categories sports, literature, economics,
etc.; the system models the user profile by giving weight-
ings to these nodes. This idea seeks to improve from the
bag of words approach commonly in storing user profile.
However, SmartPush requires news providers to embed se-
mantic meta data in their articles, and provide a concept
hierarchy, which potentially leads to standardization prob-
lems.

In the context of web browsing, there are several exam-
ples with regards to personalization systems. For example
[9] uses implicit feedback to profile users’ browsing behav-
ior. In particular, the system analyzes activity logs of a
proxy server that intercepts requests coming out of a gate-
way and logs browsing information. Topics of interest are
calculated using a parameter called a page interest esti-
mator, coupled with vector space techniques. From these
calculations, the system extracts sets of words that rep-
resents user interest. The idea is to capture in the user
profile sets of words that may have a different meaning
when coupled together (e.g bar tender). The paper also
offers suggestions on which sets of words should be given
more emphasis, such those within the bold and italic tag
in an HTML page.

Another work by [6] describes personalized search based
on a taxonomy. It uses an existing taxonomy from Mag-
ellan, which classifies documents into approximately 4400
nodes. Each node is associated with a set of documents,
and each document is represented by a weighted keyword
vector. The system profiles each user by analyzing their
browsing behavior through a proxy server. Among other
things, the system takes into account temporal effects, i.e
how long a user browses each document. From this data,
the system determines which set of nodes in the Magellan
taxonomy might be relevant to the user. Profiles are stored
as concept hierarchies, as in the SmartPush system.

There are currently many available systems that allow
for personalization to some extent. Some systems allow
users to specify page content [e.g My Yahoo], while others
recommends web pages, books, music, etc. [5] contains a
survey of many of the available systems and their method-
ologies.

B. Graph based search techniques

The Hyperlink Induced Topic Selection (HITS) algo-
rithm is a well known approach in information retrieval.
We can transform the relationship between a set of docu-
ments into a directed graph, in which a node represent a
document, and a link from node i to node j represents a
reference from document i to document j. A node that has
many outgoing links is a good hub, whereas a node that
has many incoming links is a good authority. The number
of links pointing to and pointing out of a node determine
the node’s authoritativeness and hubness, respectively.
If such a graph can be represented by an adjacency ma-

trix M, the authority vector a, and the hub vector h, we
can find a converging, steady state solution using the power
method from linear algebra [1]. The ith value of vector a
represents the authority value for node i. The adjacency
matrix M has value Mij equals to one if there is a link
from node i to node j, and zero otherwise.
In the context of personalization, we would like to indi-

cate a preference on certain documents. HITS assumes all
nodes are equal; their authority and hub measure are de-
termined essentially by the number of in-degrees and out-
degrees and nothing else. Consider an example in which
there are two clusters of document, and we indicate that
we like document j in the second cluster better. Ideally,
we want to ’lift’ the relative authoritativeness and hubness
of documents in the second cluster in relation to the whole
document collection. Two variants of HITS that deals with
such ’lifting’ are introduced and described in [3]. The fol-
lowing describes each in turn.

B.1 Single node lifting

In single node lifting, the authority and hub measure of
document j is lifted by augmenting the jth component of
either the authority vector a or the hub vector h at each
iteration. By directly changing the value of the jth element,
the nodes that are connected to it as are also affected. We
start with an initial vector ao and add δ at each iteration
loop. Because the steady state value of a only depends on
the eigenvectors ofMT M [1], this amplification of the value
aj has to happen at each step of the iteration as to affect the
original steady state. Intuitively, this makes sense: since
we are interested in node j, we want to amplify its value
at each iteration such that the original HITS steady state
solution is somewhat shifted in favor of aj .

B.2 Gradient ascent HITS

The gradient ascent HITS has a different approach in
lifting the authority and hub measures for a node. The
main idea behind gradient ascent is to find the values of
Mki in the adjacency matrix M that maximizes aj or hj .
At each iteration, the algorithm takes a small step γ ·∆Mki

for all k and i in a manner that increases the relative value
of aj or hj . Accordingly, we have a new resultant matrix
M∗ = M+γ ·∆M at each iteration! This entails to shifting
the principal eigenvector at each iteration in the direction
of our document of interest.
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This variant of HITS suffers from the common malaise of
gradient ascent algorithms, namely the trap of local max-
ima. At each step of the iteration, the algorithm tries to
maximize locally what step to take. The value of M∗ that
produces a possible increase in aj is maximized with re-
spect to the previous M, not the original M. Therefore,
it only has a local view and optimize in that sense. Nev-
ertheless, the algorithm does shift the solution away from
the original eigenvector of MT M towards a new value that
tries to increase aj in the resultant vector a.

B.3 Comparison and analysis

Both the single node lifting and gradient ascent provide
a way to ’lift’ an individual node in a cluster of documents.
[3] claims that gradient ascent is superior to single node
lifting. The single lifting approach looks at a node of in-
terest j and directly changes the adjacency matrix so as to
affect all the nodes that link to it directly.
In contrast, the gradient ascent node tries to readjust

the values of all the nodes in the matrix MT M so as to
lift aj . It looks at all the values in the matrix and decides
which ones should increase or decrease or stay the same
so as to maximize the authoritativeness or hubness of a
certain document.
Intuitively, the second approach is more elegant and ro-

bust and should therefore perform better. As our experi-
ments in section VI show, this is indeed the case.

III. Extensions to current techniques

We would like to extend the above algorithm with the
following heuristic: decrease the value of all nodes l �= j,
given a node of interest j. The motivation is that we would
like to see a faster rate of change for readjusting the relative
rankings of authorities and hubs, by doing both gradient
ascent and descent at the same time. Adding this simple
heuristic is a natural extension of existing theory. [3] men-
tions the use of gradient descent to reduce the authority of
irrelevant documents, but claims that negative weight val-
ues of aj complicates the analysis. The following sections
introduce two methods that explores this heuristic a step
further.

A. Combination one

In this combination we take into account the contribu-
tion of lifting the node of interest j as well as the average
contribution of pushing down nodes l �= j. However, we
note that the average contribution of the nodes l �= j may
be greater the contribution from lifting node j, for which
the total step ∆Mki for a certain i, j in the matrix M may
be negative. We note that given an adjacency matrix M
with values of ones and zeros, it is not possible to have a
negative entry Mki using the gradient ascent method. Now
that we are pushing down irrelevant nodes, these values
may be negative.
Noting the contribution from lifting node j to be

∆Mkij
and the contribution from lifting node l �= j to

be ∆Mkil
, we apply the following rule: if −∆Mkij ≤

1
N−1

∑
l , l �=j ∆Mkil

, then ∆Mki = ∆Mkij else ∆Mki =

∆Mkij
+ 1

N−1

∑
l , l �=j ∆Mkil

. That is to say: if the effects
of ∆Mki from lowering the authorities of all nodes l �= j
is such that the authority of node j is lowered, we ignore
their contributions to ∆Mki.

B. Combination two

In this second extension, we loosen our previous re-
striction, and for all cases, let ∆Mki = ∆Mkij

+
1

N−1

∑
l , l �=j ∆Mkil

.
Now it is possible to have negative values for ∆Mki. The

justification for this method is the fact that we essentially
care only about the relative rankings of the node, and even
if lowering node l contributes to lowering the nominal value
of aj or hj , we allow it to happen because the relative value
of aj is still greater than the lowered node al.
For a gradient ascent and descent algorithm running at

n iteration, we can do the following to attenuate possible
negative values of ∆Mki:
• At odd values of n, calculate ∆Mki as ∆Mki = ∆Mkij

.
• At even values of n, calculate ∆Mki as ∆Mki = ∆Mkij

+
1

N−1

∑
l , l �=j ∆Mkil

.
Alternating between these two give the algorithm some
time to readjust its values in the cases where Mki is nega-
tive.
In general, we expect both combinations to have a faster

rate of readjustment than the normal gradient ascent HITS.
We analyze the performance of each of these variants in
section VI.

IV. Taxonomy based user modeling

Gradient ascent HITS provides a method to bias certain
documents in a graph based structure. What is lacking,
however, is a method of keeping track the history of user
interests. In this respect, we propose a model of user profil-
ing to complement our theoretical extension of graph based
search.
We found that most user models lie in the bag of words

approach. Strings of words that represent user interests
are kept in the form of web browser cookies or files. More-
over, most user models do not take into account what users
dislike.
In the context of our search engine, this approach is in-

adequate for several reasons. Firstly, the bag of words ap-
proach does not consider the semantics of words. For ex-
ample, when users indicate liking for ’cars’, this approach
does not consider other words such as ’automobile.’ Like-
wise, when users indicate liking for ’rose’ in the sense of
’wine,’ as opposed to ’flower,’ the bag of words approach
lacks an efficient method to make a proper distinction. In
other words, we run into the problem of homonyms and
synonyms. Secondly, by ignoring what users dislike, the
system does not learn from past mistakes. Though this ap-
proach of using only positive feedback is safer, it does not
put the set of dislikes in proper perspective.
We propose an approach that uses a tree coloring tech-

nique. Tree coloring involves tagging or coloring nodes in
a general n-tree, such as a binary tree, with information.
The tree that we use is an Open Directory Project (ODP)
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taxonomy, which contains nodes that represent semantic
contexts of web pages. We keep a record of visited nodes,
and ’color’ each by the number of times it has been visited,
the number of times the user rates it positive or negative,
and URL’s that the node associates with.
ODP is a multiply connected tree: each node can have

multiple children and parents. In the tree itself, ODP has
only one parent, but its format allows multiple aliasing, so
in effect a node may have multiple parents. In addition,
each node is associated with an ID number and a set of
’leaves’ which are the web pages associated with the node.
The user profile is essentially a mapping of contexts to

sets of ODP nodes. A context is defined as a user query.
For each query, the system generates a set of pages. Users
can rate pages as being ’good’ or ’unrelated.’ Since each
page is associated with a node in ODP, this feedback is
updated into the user profile. Each entry in the mapping
has the number of times the node has been visited, the
number of positive and negative feedback for the node and
the set of URL associated with it. Figure 1 (a) displays a
schema of the user profile.
From our discussion in section II, we found several meth-

ods that also uses this tree coloring scheme. Note, however,
that this approach, although along the same lines, are dis-
tinct from these other methods. [6] uses a tree weighting
scheme to calculate the vector space model of documents.
However, the weights - in our case, colors - of the tree does
not change. The other example, SmartPush [8], uses a
simple taxonomy provided by news provider to determine
which news articles to reccomend. This tree is dynamic,
but does not cover the breadth and depth of our proposed
system. Hence, although the idea of tree coloring is not
novel in itself, the way we combine it with the system is
quite distinct.
The following summarizes our user modeling approach:

• Data gathering. Our model gathers data using explicit
feedback. Users are allowed to rate a certain context pos-
itively and negatively. Feedback will be recorded in the
user’s profile.
• Representation. A user profile is a mapping from con-
texts to nodes. One context may map to several nodes.
For example, the context ’car’ may map to nodes that rep-
resent ’Honda’, ’Volvo’, etc. Each node has a ’color’ that
encodes the number of times it has been visited, rated pos-
itive, negative, and associated URL’s.
• Interpretation. The table is kept as the user profile.
When a user submits a query, the system does a table
lookup to find the context. The following happens:
– If found, the system looks at the mapping of nodes, and
accordingly give more or less weighting to its associated
URL’s to be filtered.
– If not found, the system tries to associate that context
with an ODP node. There may be several nodes that can
be associated with the context. For each of these nodes,
look up all the nodes in the table and check if either:
1. The node associated with the query has the same par-
ent as any node in the table.
2. The node associated with the query is a child of any of

CONTEXT_1                       { [ Node Name, Node ID, # NEUTRAL -> {URL}, 
                                                                                        # ’+’               -> {URL},
                                                                                        # ’-’               -> {URL}]
                                                 [ Node Name, Node ID, ......                                  ]

                                                 [ Node Name, Node ID, .......                                 ] }

CONTEXT_2                       { [Node Name , .... ], [Node Name, ....], [ Node ....  ]

......

(a) User Profile

TOP

artscomputer_sciencehealth

vision virus   machine_vision    virus

(+) (-)? ?

(b) Sample case

                                                     ........

Fig. 1. Building and using the user profile (a) depicts a schema of
the user profile, (b) is an example of a use case

the node in the table.
If any of the above is true, return the associated URL’s and
their respective weights to be filtered; else, return nothing.
The results are passed back to the graph based search

algorithm from the previous section. Nodes with positive
weights are given positive bias, while nodes with negative
weightings are given negative bias. Note that the current
prototype implementation simply filters out the negatively
weighted URL’s. It searches only up to one depth up and
down the tree to look for parents and children when com-
paring nodes.
We note that there is much room for improvements. For

example, generalizing the node searching mechanism up to
n nodes up and down the classification tree, we observe that
the nodes are more generic as they reach the root node. We
can add the following simple heuristic: the closer a node
is to the root, the less depth the tree will be searched. So
instead of finding up to depth n for each node, the depth
should be a function of how close a node is to a tree.
To illustrate clearly our profiling system, we give a sim-

ple example as drawn in Figure 1 (b). In the past, a user
had queried ’vision’ and was given two set of results, one
relating health, another regarding computer science (ma-
chine vision). The user indicated that he or she preferred
vision in the health sense, and rated vision in the com-
puter science sense as negative. Next the user queries the
word ’virus’. The system does not have any information re-
garding the user’s preference on ’virus’ and therefore looks
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at all the nodes in the profile table. Searching for ’virus’
in ODP, the system finds two nodes, one in health/virus
and another in computer science/virus. Matching the
user’s profile shows that the user has indicated interest
in the node health/vision, a negative weighting on com-
puter science/machine vision, finds that health/vision has
the same parent as health/virus and incorporates this fact
in returning the results.
Clearly, this ontological approach is beneficial in the

sense that the system can better predict user interest and
further classify them into separate categories - leveraging
on the semantics inherent in a taxonomy. Instead of trying
to capture the meaning of words per se, an ontological pro-
file captures the semantics of user queries, thus enabling it
to find synonyms or related contexts as well as hierarchical
relationships. Therefore we overcome many limitations of
the standard bag of words approach.
Moreover, recent work by [10] introduces a technique for

static matching of several users who had two ’colored’ on-
tologies. This method has possible applications in the area
of interest matching and collaborative filtering.
In summary, the proposed user model introduces im-

provements over the bag of words approach and various
other techniques. Given the design constraints, we feel that
it is the most feasible approach. The model is quite mod-
ular and is easily extendible to other applications.

V. System description

The Persona system combines the two topics of our dis-
cussion: filtering and user profiling. The filtering utilizes
the extended graph based search algorithm. The user pro-
filing is as described in the previous section. The core of
persona is a personalization module that wraps around a
search engine. It lies between the search engine and the end
user, refining the results coming out of a ’normal’ search
engine. Figure 2 shows a diagram of the system.
The system consists of a front end interface to interact

with the user as well as a back end module. The front
end accepts user queries and feedback, while the back end
processes these queries while building a user profile. The
back end core of Persona consists of a filtering module and
a user profiling module. The following sections describe
each in turn.

A. Overview of the filtering mechanism

The brief overview of the filtering mechanism is as fol-
lows:
1. Query input. The user inputs a query, which will then be
outsourced to dmoz, an existing search engine - the result
of which will be filtered to leave the top n results. These n
documents corresponds to nodes in the ODP taxonomy.
2. Personalization Agent. First, the system consults the
user profile to check the user’s history. If there is a match,
the system incorporates past user preference. If not, a
’normal’ filtering module then processes these results. The
HITS algorithm as described in [1] dictates the following:
(a) Call the initial set of results the root set.

(b)  Persona system wraps around existing search engine

(a) ’normal’ search engine

TAXONOMY

QUERY               SEARCH ENGINE               USER PROFILE                 FILTER

QUERY                      SEARCH ENGINE

Fig. 2. System diagram

(b) Expand the root set by order one distance, such that
all web pages that point from and to the root set are in-
cluded. This set of node is the base set.
(c) Treating each web page as a node and each URL in
that web page as a link, create a directed graph structure
consisting of all members of the base set. In this calcu-
lation, the nodes that are from the same domain are not
taken into account and are thus filtered out.
(d) Using the number of in-degrees and out-degrees from
each node, the algorithm calculates the authoritativeness
and hubness of each node. Based on a node’s authorita-
tiveness, the results are ranked accordingly.
(e) The ranked results are then updated against the user
profile.
3. Feedback-based Result Refinement. The system returns
the filtered results to the user. The user may give positive
or negative feedback on the returned set of documents. The
system will then refine the current results based on these
preferences, giving more weighting to the positively rated
pages and less to the negatively rated pages.
In addition, these user feedback are incorporated into the
user profile.

B. User Profile

The user profile relies on relevance feedback. Each posi-
tive and negative feedback serves two function. First is to
refine the set of searches and re-rank the results. Second
is to build the user’s profile. The user feedback is updated
by ’coloring’ nodes as we described in the previous section.
The user profile keeps a table of mappings: only those

nodes that are of interest are kept in the profile. In this
manner, we do not keep the whole ODP taxonomy inside
the user profile. We only keep track of the nodes that
has been colored. The user profile then can be kept small,
allowing for scalability.
The system consults the user profile at every new query.

If a query exists in the user profile, it returns the set of
URL’s associated with the colored nodes. If there is no data
on the query, the user profile finds the set of ODP nodes
that closely matches the query and tries to find nodes in
the profile that may be its parents or children.
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In the case of user feedback, the user profile simple colors
related nodes and passes on the bias information to the
variants of HITS. These variants will take the bias into
account and return the set of most related documents.
We note that most search engines have the feature that

lets users browse through ’similar pages.’ We claim that
this refining technique is different from ours. Finding ’sim-
ilar pages’ usually entails returning the closest document
set that the search engine indexes. In contrast, our filter-
ing mechanism expands a set of URL’s and emphasize those
with positive feedback. It expands up to depth three down
to create a new graph structure, and lift those documents
which are positive.

VI. Experimental results

To cement our discussions, we run sets of experiments
consisting of two parts. The first part contains sets of con-
trolled experiments to verify our extension of the graph
based algorithm. The second part are preliminary experi-
ments done in real time to gauge the performance of Per-
sona.
The controlled experiments went at great lengths to ver-

ify that our extension is indeed better than previous meth-
ods. We find these experiments to be of foremost impor-
tance, because the algorithm is the core of Persona.
The real time experiments are done as a sanity check to

ensure that the system as a whole does behave as expected.
The following discusses these experiments in detail.

A. Controlled experiments

In the controlled experiment, we generate clusterings of
documents. Each cluster consists of a fixed number of doc-
uments, and they are bind to a certain context. Each doc-
ument has a fixed number of links. There are two types of
links, ones by which a document points to a document in
a the same cluster, and ones by which a document points
to another document in a different context. To generate a
statistically reliable data set, the way each node interacts
with one another is determined stochastically. To following
summarizes the experiment parameters:
• Number of clusterings or context. Each generated set
contains a fixed number of contexts or topics. Each node
k in the set is attached to a context ck ∈ {C1, C2, ..., CM}
for M contexts.
• Number of documents in a cluster: D. To create a set of
balanced clusters, the number of documents per cluster is
fixed.
• Number of links per document: N . Again, to create a set
of balanced clusters, the number of links per document is
fixed. This parameter is upper bounded by the number of
documents per cluster.
• Probability that a link connects two documents in the
same cluster: p. Define p to be Prob( lij | ci = cj) and
1 − p to be Prob( lij | ci �= cj), where lij is a link from
node i to node j. In other words, p denotes the probability
of a document pointing to another document of the same
context, and 1 − p denotes the probability of a document
pointing to another document with a different context.

Context A

Context B

Context C

Fig. 3. View of clusters of documents tagged to different context
cross referencing each other

Parameter Variable Value
Number of categories M 3
Number of documents per category D 10
Number of links per document N 8
Prob( lij | ci = cj) p -
Prob( lij | ci �= cj) 1− p -
Weighting factor γ 0.5
Number of iterations - 5

TABLE I
Parameters for a sample data point

• Gamma (γ). γ is the step size of the gradient ascent,
and the perturbation size in single node lifting.
• Number of iteration. Even though in theory would like to
find the steady state value of the authority and hub vectors,
in practice we are only interested in the relative rankings
of the nodes, which stays relatively the same after four or
five iterations.
Figure 3 illustrates an example of a possible clusterings of

documents - represented as nodes - as well as their interac-
tion. Since links are probabilistic, each generated nodes-set
has varying graph structures.
Now that we have this platform, we want to create test

harnesses based on our algorithms. In particular, we would
like to see the effects of lifting using all four variants of
HITS.

A.1 Performance Metric

We would like to have a performance metric to quantify
these results. We want to measure performance on two cri-
teria: how much the average relative rankings of relevant
nodes are increased by the technique, and how much of the
average relative rankings of irrelevant nodes are decreased.
By relevant nodes, we mean nodes that has the same con-
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text as the lifted node. To quantify this fact, we use a
performance metric described as follows:
• Given D number of documents per category, and node i
with rank Ri and context ci = clift−node, we measure the
average ’lift’ L to be:

L =
1
D

·
∑

∀i | ci=c(liftnode)

(Riold
− Rinew)

• The average ’suppress’ S of all nodes j with context cj �=
cliftnode is defined to be:

S = − 1
D · (M − 1)

·
∑

∀j | cj �=c(lift−node)

(Riold
− Rinew

)

Note that L and S are not independent metrics. For
example, if all the rankings stay the same, that is, if L = 0
then there is very high probability that S is also equal to
zero. If most of the rankings change - i.e L is relatively
high - then S is very likely to be relatively high as well.
Using L and S as performance metrics, we can perform

several runs and accumulate data for statistical analysis.

A.2 Simulation Results

We are interested in the relationship between probability
of a node pointing to another node of the same context p
to the performance metrics L and S. Using the parameters
described in Table I, we vary the value of p from 0 to 1,
with increments of 0.1. At each interval, we calculate the
L and S metrics for five different trials. With higher p, we
expect the number of documents lifted or suppressed to be
larger. The relationship should be somewhat linear. In the
following, we will run two sets, one for authoritativeness
measure, another for hubness measure. We refer to our
theoretical extension from section III as gradient ascent
combination one, or gradient ascent+, and gradient ascent
combination two, or gradient ascent++.
The discussion is broken down into the two subsections.

First we distinguish between authority and hub measures.
Second we separate the L metric from the S metric.

A.3 Authority simulation results

First we analyze the results for the L metric. We graph
the set of points to better visualize the results. Figure 4
plots this graph in its point representation and its least
square estimate for each cluster of data. In this simu-
lation, the line that represents single node lifting is very
close to the line that represents gradient ascent+. The line
that represents gradient ascent is very close to the line that
represents gradient ascent++. The shape of all the lines,
however, are linearly increasing, which is what we should
expect.
In section III, we discuss that both extension of the gra-

dient ascent method should perform better. However, the
graph merely shows that gradient ascent+ performs at least
as well as single node lifting, and gradient ascent++ per-
forms at least as well as the original gradient ascent. We
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Fig. 4. Data points for authoritativeness measure using metric L.
The top line represents the least square estimate for gradient ascent
and gradient ascent++. The bottom line represents the estimate for
gradient ascent+ and single node lifting, the other two merged into
one.
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Fig. 5. Data points for authoritativeness measure using metric S.
The dashed line at the top is the least square estimate for gradient
ascent++. The dotted line represents normal gradient ascent. The
solid line represents gradient ascent +. Lastly, the bottom line rep-
resents single node lifting.

had expected both variants of gradient ascent should con-
verge faster to a solution that differentiates between lifted
and suppressed nodes.
What we can infer from this graph is the difference be-

tween the performance of gradient ascent in comparison to
the single node lifting variant of HITS. Single node lifting
at most lifts as much documents than the gradient ascent
variants. With these tentative results, we look at the next
graph.
Figure 5 plots the data points and its least square esti-

mation for the S metric. Here the results are more encour-
aging. We see that the gradient ascent++ does confirm
our theoretical expectations. However, gradient ascent+

performs in between single node lifting and the original
gradient ascent.
This substantial difference suggests that both extensions
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Fig. 6. Data points for hubness measure using metric L. The dotted
line is the least square estimate for single node lifting, the dashed line
for gradient ascent combo 1, the other two merged into one.

of gradient ascent works better in suppressing irrelevant
documents than lifting relevant documents. With this fact
in mind, we move on to the next analysis.

A.4 Hub simulation results

This section analyzes the results from running the sim-
ulation to calculate hub measure. As before, the raw data
and least square estimate for the L metric is calculated.
Figure 6 plots these values.
As in the previous L metric analysis, the original gradi-

ent ascent is very closely connected to gradient ascent++

in that they are practically collinear. The other gradient
ascent variant, however, fare better than in the previous
simulation, though it is still distinctly below the original
gradient ascent.
We note that the metric values are negative in this sim-

ulation for p less than 0.4 The reason is that for low p,
the lifted document will be linked to many irrelevant doc-
uments. The lifted hub will pull up these documents along
with it.
The S metric analysis, however, shows interesting re-

sults. In this simulation, as depicted in Figure 7, both vari-
ants of the gradient ascent perform better than the original
gradient ascent and the single node lifting variant. Again,
this follows the trend that we see in our previous S metric
analysis: both extensions of gradient ascent suppress irrel-
evant document better than they lift relevant documents.
Figure 7 validates our expectation that combining both

gradient ascent and descent results in a faster rate of
change. The slope is steeper for both gradient ascent+ and
gradient ascent++ than it is for the other two techniques.

A.5 Summary of analysis

Though the results are somewhat mixed, we can conclude
the following results:
• The first combination of gradient ascent, or gradient
ascent+ at least performs as well as single node lifting.
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Fig. 7. Data points for hubness measure using metric S. The top
solid line is the least square estimate of gradient ascent++. The
dotted line is the estimate for gradient ascent+. The second from the
bottom solid line is for normal gradient ascent. The dashed line is for
single node lifting.

• The second combination of gradient ascent, or gradient
ascent++ at least performs as well than the original gradi-
ent ascent.
• Both combinations does better at suppressing irrelevant
documents rather than lifting relevant documents.
The reason why our first combination does not work as

well may be that the approach is ’half hearted’ in that in-
stead of totally maximizing the contribution of preferred
document j and minimizing the contribution of other doc-
uments l �= j, we only do so when the nominal value of j
at least increases. The result is a gradient step size that
does neither. Our second approach is more effective be-
cause we only concern ourselves with the relative value of
document j in comparison to other nodes. In the end, this
does indeed produce better results.

B. Real-time analysis

The purpose of the set of validation and testing above
is to complement the system implementation, since it is
not possible to run controlled experiments in this real time
system. However, we did test the Persona prototype to
check if it produces reasonable results. We tried using sev-
eral queries, namely: machine learning and virus. For the
machine learning query, we indicate that we like a page
that relates machine learning to games, and indicate all
other unrelated pages as negative. After submitting our
feedback, Persona returns seven out of ten pages relating
to machine learning, as opposed to one out of ten pages in
the previous case. As for the virus query, we got back two
sets of pages, one pointing to health related virus, and an-
other to computer related virus. We indicate as positive all
the pages that are health related, and indicate as negative
all the pages that are computer related. Persona returns
a set of ten pages all relating to health. We explained in
section 5 how our method is different than the ’click to find
similar pages’ that we find in other search engines.
However, the prototype as it stands needs much improve-
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Fig. 8. Snapshot of the Persona system

ment, particularly in terms of speed. Right now, for every
page, it will open all the URL’s in real time, causing the
system response to be very slow. We need to add a caching
and a multi threading model to hide latency. The filtering
process itself is relatively fast; the system can process a few
hundred nodes in less than one second.
As it stands, these real time experimental results are in

no way concrete nor plausible, yet they serve as a prelim-
inary measure and a sanity check which indeed points in
the right direction.
A snapshot of the Persona user interface is shown in

Figure 8.

VII. Conclusion

In this paper, we perform analyses of several method-
ologies in graph based search algorithms and extend exist-
ing theory. In addition, we develop a robust, scalable user
model using a taxonomy structure as provided by the Open
Directory Project. We integrate these two findings in the
Persona system. Our goal is to create a system that better
personalizes users’ web experience.
Our extension of current theory is derived from the gra-

dient ascent variant of HITS. We experiment with two pos-
sible combinations of gradient ascent. From running sets
of simulations, we verified that gradient ascent is superior
to single node lifting. One of our proposed combination
managed to perform at least as well as the gradient as-
cent variant. We come up with robust quantitative results
regarding the performance of these techniques.
We build a user model that improves upon current ex-

isting methods. Though it is not feasible to test the effec-
tiveness of our user profiling technique, several tests with
the Persona system has shown positive results. Moreover,

recent models has been developed to perform static match-
ing among user profiles to determine similarities between
users [10]. We find this very encouraging, and may extend
further work in this direction. In the mean time, there are
plenty of work in the near future, as we improve the system
in terms of speed.
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