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General web search is performed predominantly through
text queries to search engines. Because of the enormo
size of the web, text alone is usually not selective enoug
to limit the number of query results to a manageabl
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Abstract

Recent web search techniques augment traditional
text matching with a global notion of “importance”
based on the linkage structure of the web, such
as in Google’sPageRankalgorithm. For more re-
fined searches, this global notion of importance
can be specialized to create personalized views of
importance—for example, importance scores can be
biased according to a user-specified set of initially-
interesting pages. Computing and storing all possi-
ble personalized views in advance is impractical, as
is computing personalized views at query time, since
the computation of each view requires an iterative
computation over the web graph. We present new
graph-theoretical results, and a new technique based
on these results, that encode personalized views as
partial vectors Partial vectors are shared across mul-
tiple personalized views, and their computation and
storage costs scale well with the number of views.
Our approach enables incremental computation, so
that the construction of personalized views from par-
tial vectors is practical at query time. We present
efficient dynamic programming algorithms for com-
puting partial vectors, an algorithm for constructing
personalized views from partial vectors, and exper-
imental results demonstrating the effectiveness and
scalability of our techniques.

Introduction and Motivation

size. ThePageRanlkalgorithm [LO], among others§],
has been proposed (and implementedioogle[1]) to

exploit the linkage structure of the web to compute globa

e

specify his bookmarks as a set of preferred pages, so that
any query results that are important with respect to his
bookmarked pages would be ranked higher. While ex-
perimentation with the use of personalized PageRank has
shown its utility and promises] 10], the size of the web
makes its practical realization extremely difficult. To see
why, let us review the intuition behind the PageRank al-
gorithm and its extension for personalization.

The fundamental motivation underlying PageRank
is the recursive notion that important pages are those
linked-to by many important pages. A page with only
two in-links, for example, may seem unlikely to be an
important page, but it may be important if the two ref-
erencing pages aréahoo! and Netscapewhich them-
selves are important pages because they have numerous
in-links. One way to formalize this recursive notion is to
use the “random surfer” model introduced i0]. Imag-
ine that trillions ofrandom surfergre browsing the web:
if at a certain time step a surfer is looking at pageat
the next time step he looks at a random out-neighbor of
p. As time goes on, the expected percentage of surfers
at each page converges (under certain conditions) to a
limit 7(p) that is independent of the distribution of start-
ing points. Intuitively, this limit is the PageRank gf
and is taken to be an importance scoreifpsince it re-
flects the number of people expected to be looking at
at any one time.

The PageRank scorép) reflects a “democratic” im-

portance that has no preference for any particular pages.
Iﬁn reality, a user may have a sét of preferred pages

such as his bookmarks) which he considers more inter-
esting. We can account for preferred pages in the random
surfer model by introducing a “teleportation” probability

c: at each step, a surfer jumps back to a random page in

“importance” scores that can be used to influence th with probabilityc, gnd with probabilit_yl —¢ continues
ranking of search results. To encompass different notion orth along a hyperlink. The limit distribution of surfers

of importance for different users and queries, the basid" this model would favor pages ift, pages linked-to by

PageRank algorithm can be modified to create “personP' pages linked-to in turn, etc. We represent this distri-

alized views” of the web, redefining importance accord-bunon as gpersonalized PageRank vec(@PV) person-

ing to user preference. For example, a user may wish t&“zed on the seP. Informally, a PPV is a persona!lzed
view of the importance of pages on the web. Rankings of

This work was supported by the National Science Foundation undef USEI’s t?Xt'based query resu!ts can be bia_seql aC_Cording
grant [1S-9817799. to a PPV instead of the global importance distribution.




Each PPV is of length, wheren is the number of encoding PPV’s as shared components. The full encod-
pages on the web. Computing a PPV naively using dng is presented in Sectioh Section5 discusses the
fixed-point iteration requires multiple scans of the webcomputation of partial quantities. Experimental results
graph [LQ], which makes it impossible to carry out online are presented in Sectidh Related work is discussed in
in response to a user query. On the other hand, PPV'’s foBection7. Section8 summarizes the contributions of this
all preference sets, of which there &g is far too large  paper.
to compute and store offline. We present a method for
encoding PPV’s as partially-computed, shared vector® Preliminaries
that are practical to compute and store offline, and fronLet a_
which PPV'’s can be computed quickly at query time. -

In our approach we restrict preference setto sub-

sets of a set d““bpageSH' selected as those of greater and O(p) the set of in-neighbors and out-neighbors of
interest for personalization. In practice, we expékt

: . . ively. Individual in-neighbors are denoted as
to be a set of pages with high PageRank (“important’” respectlyey L ;
pages”), pagespinga human—gonstn?cted din(ectorr)y sucéi(p) (1 < < |I(p)]), and individual out-neighbors are

. . enoted analogously. For convenience, pages are num-
|
as Yahoo! or Open Directory[2], or pages important bered froml to n, and we refer to a page and its as-

to a particular enterprise or application. The sizebf sociated number interchangeably. For a vector v(p)
can be thought of as the available degree of personaliza: 9 Y- b olp

tion. We present algorithms that, unlike previous work denotesentry p, the p-th component ofv. We always

[5, 10], scale well with the size off. Moreover, the same  Y/PESet vectors in boldface and scalars (e.@y)) in nor-
T ' ’ mal font. All vectors in this paper are-dimensional and

! . have nonnegative entries. They should be thought of as
much broader set of all PPV’s, allowing at least some ;. = .
N . distributions rather than arrows. Theagnitudeof a vec-
level of personalization on arbitrary preference sets. . : n ) : :
: - . tor v is defined to bey ", v(:) and is written|v|. In
The main contributions of this paper are as follows. . = .
this paper, vector magnitudes are alway$0inl]. In an
¢ A method, based on new graph-theoretical resultdmplemention, a vector may be represented as a list of its
(listed next), of encoding PPV’s gmrtial quanti-  nonzero entries, so another useful measure isitrenf
ties enabling an efficient, scalable computation thatv, the number of nonzero entriesin
can be divided between precomputation time and We generalize the preference getliscussed in Sec-
query time, in a customized fashion according totion 1 to apreference vectou, whereju| = 1 andu(p)
available resources and application requirements. denotes the amount of preference for pag&or exam-
ple, a user who wants to personalize on his bookmarked

e Three main theorems: Thenearity Theoremal- pagesP uniformly would have a: whereu(p) 1

; k = TP
lows every PPV to be represented as a linear comp € P, andu(p) = 0 if p ¢ P. We formalize person-

:)lnatlont of ?gﬂi’/,\/iﬁom yrlleldlr(;g a naturaltwa¥h alized PageRank scoring using matrix-vector equations.
I—? Eon_ls_hruc I S r%m s aret cortnpgnen S: d deLetA be the matrix corresponding to the web gragh
ubs Theorenallows basis vectors to be encode whereA,; — ‘O%j)‘ if page; links to page, andA,, — 0

aspartial vectorsand ahubs skeletorenabling ba- : M ;
. otherwise. For simplicity of presentation, we assume that
sis vectors themselves to be constructed from com-

mon components. ThBecomposition Theorers- every page has at least one out-neighbor, as can be en-

tablishes a linear relationship among basis vector forced by adding self-links to pages without out-links.
P 9 SThe resulting scores can be adjusted to account for the

;’;I:;Ch 's exploited to minimize redundant computa- (minor) effects of this madification, as specified in Ap-
' pendixC.2
e Several algorithms for computing basis vectors, For a givenu, the personalized PageRank equation
specializations of these algorithms for computing can be written as
partial vectors and the hubs skeleton, and an algo-
rithm for constructing PPV’s from partial vectors

using the hubs skeleton. wherec € (0, 1) is the “teleportation” constant discussed

e Experimental results on real web data demonstrat!" Sectionl. Typically c ~ 0.15, and experiments have

ing the effectiveness and scalability of our tech- ;hown that small_ changes “”'h?"e ||tt|_e effect in prac-
niques. tice [10]. A solution v to equation {) is a steady-state

distribution of random surfers under the model discussed
In Section2 we introduce the notation used in this paperin Sectionl, where at each step a surfer teleports to page
and formalize personalized PageRank mathematicallyp with probability ¢ - u(p), or moves to a random out-
Section3 presents basis vectors, the first step towardsieighbor otherwisell0]. By a theorem of Markov The-

(V, E) denote thaveb graphwhereV is the set
of all web pages and’ contains a directed eddg, q) iff
pagep links to pagey. For a page, we denote by (p)

v=(1-c)Av+cu (¢D)]



ory, a solutiorw with |v| = 1 always exists and is unique Recall from Sectiori that preference sets (now pref-
[9].} The solutionv is thepersonalized PageRank vec- erence vectors) are restricted to subsets of a set of hub
tor (PPV) for preference vectoun. If w is the uniform  pagesH. If a basis hub vectofor hereaftehub vectoy
distribution vectoru = [1/n,...,1/n], then the corre- foreachp € H were computed and stored, then any PPV
sponding solutior is theglobal PageRank vectdd (], corresponding to a preference gebf sizek (a prefer-
which gives no preference to any pages. ence vector withk nonzero entries) can be computed by

For the reader’s convenience, Table 1 on the nexadding up thek corresponding hub vectors, with the
page lists terminology that will be used extensively in appropriate weights,.

the coming sections. Each hub vector can be computed naively using the
fixed-point computation in10]. However, each fixed-
3 Basis Vectors point computation is expensive, requiring multiple scans

_ _ of the web graph, and the computation time (as well as
We present the first step towards encoding PPV's astorage cost) grows linearly with the number of hub vec-
shared components. The motivation behind the encodwors|H|. In the next section, we enable a more scalable

ing is a simple observation about the lineaiof PPV's,  computation by constructing hub vectors from shared
formalized by the following theorem. components.

Theorem (Linearity). For any preference vectora,

andu., if v; andwv, are the two corresponding PPV's, 4 Decomposition of Basis Vectors

then for any constanis;, oz > O suchthatv; +a2 =1,  In Section3 we represented PPV's as a linear combina-
tion of |[H| hub vectorsr,, one for eactp € H. Any
Q11 + vy = PPV based on hub pages can be constructed quickly from

(1 — ) A(a1v1 + a2v2) + claruy + asuz) (2) the set of precomputed hub vectors, but computing and
storing all hub vectors is impractical. To compute a large
Informally, the Linearity Theorem says that the solution Number of hub vectors efficiently, we further decompose
to a linear combination of preference vectars and ~ them intopartial vectorsand thehubs skeletoncompo-
us is the same linear combination of the corresponding€nts from which hub vectors can be constructed quickly
PPV'sv; andv,. The proof is in AppendiA. at query time. The representation of hub vectors as par-
Letx,, ..., be the unit vectors in each dimension tial vectors and the hubs skeleton saves both computation
so that for eachi, ; has valuel at entryi and0 every- time and storage due to sharing of components among
where else. Let; be the PPV corresponding4g. Each hub vectors. Note, however, that depending on available
basis vectorr; gives the distribution of random surfers résources and application requirements, hub vectors can
under the model that at each step, surfers teleport back € constructed offline as well. Thus "query time” can be
pagei with probability c. It can be thought of as repre- thought of more generally as “construction time”.
senting page’s view of the web, where entry of r; is We compute one partial vector for each hub page
j'simportance in’s view. Note that the global PageRank P» WhI.Ch essentially encodes the part of the hub vector
vector it (ry + --- + 7,), the average of every page's "» Unique top, so that components shared among hub

view. vectors are not computed and stored redundantly. The
An arbitrary personalization vectar can be written complement to the partial vectors is the hubs skeleton,
as a weighted sum of the unit vectars which succinctly captures the interrelationships among

hub vectors. It is the “blueprint” by which partial vec-
n tors are assembled to form a hub vector, as we will see in
u=>Y oz (3)  Sectio.3.
i=1 The mathematical tools used in the formalization of
this decomposition are presented next.

for some constants;, . .., «,,. By the Linearity Theo-
rem, .
n 4.1 Inverse P-distance
v= Z QiTi 4) o formalize the relationship among hub vectors, we re-
i=1

late the personalized PageRank scores represented by
is the corresponding PPV, expressed as a linear combin®PV's toinverse P-distanceis the web graph, a concept
tion of the basis vectors;. based orexpectedf distancesas introduced in7].

1Specifically,v corresponds to the steady-state distribution of an  3Note that while the mathematics and computation strategies in this
ergodic aperiodic Markov chain paper are presented in the specific context of the web graph, they are

2More precisely, the transformation from personalization veciors general graph-theoretical results that may be applicable in other scenar-
to their corresponding solution vectawds linear. ios involving stochastic processes, of which PageRank is one example.



Term Description Section

Hub SetH A subset of web pages. 1

Preference SaP Set of pages on which to personalize 1
(restricted in this paper to subsetsidj.

Preference Vecton Preference set with weights. 2

Personalized PageRank Vector (PPVImportance distribution induced by a preference vector. 2

Basis Vectorr,, (or r;)

PPV for a preference vector with a single nonzero entty 3

atp (ori).
Hub Vectorr,, Basis vector for a hub pagec H. 3
Partial Vector(r, — rf) Used with the hubs skeleton to construct a hub vector] 4.2
Hubs Skeletorp Used with partial vectors to construct a hub vector. 4.3
Web Skeleton Extension of the hubs skeleton to include pages nétin 4.4.3
Partial Quantities Partial vectors and the hubs, web skeletons.
Intermediate Results Maintained during iterative computations. 5.2

Table 1: Summary of terms.

Letp,q € V. We define thenverse P-distance;,(q)
fromptogqas
> Plije(t — o)™ (5)

t:p~>q

where the summation is taken over #&dlurs ¢ (paths
that may contain cycles) starting atand ending at,

possibly touchingp or ¢ multiple times. For a tour
t = (ws,...,wg), the lengthi(¢) is k& — 1, the num-
ber of edges irt. The termP[t], which should be in-
terpreted as “the probability of traveling, is defined
as|[} oo OF Lif I(t) = 0. If there is no tour
from p to ¢, the summation is taken to ie* Note that
(0)

q “closer” top. As suggested by the notation and proven

in AppendixC, 7,(¢q) = rp(q) for all p,q € V, so we

will use r,,(¢q) to denote both the inverse P-distance an
the personalized PageRank score. Thus PageRank sco

can be viewed as an inverse measure of distance.

measures distances inversely: it is higher for noded'»

4.2 Partial Vectors

Intuitively, rf(q), defined in equationgj, is the influ-
ence ofp ong throughH. In particular, if all paths from
pto ¢ pass through a page i, thenH separateg andg,
andr(q) = r,(q). For well-chosen set#l (discussed
in Section4.4.2, it will be true thatr,(¢) — ' (¢) = 0
for many page9, ¢q. Our strategy is to take advantage
of this property by breaking, into two components:

(rp — 74!) andrH, using the equation

()

We first precompute and store tpartial vector (r, —
H) instead of the full hub vectar,,. Partial vectors are

rp = (rp—rf)—i—rf

cheaper to compute and store than full hub vectors, as-
suming they are represented as a list of their nonzero en-

diries. Moreover, the size of each partial vector decreases
@s) H | increases, making this approach particularly scal-

able. We then add{f back at query time to compute

Let H C V be some nonempty set of pages. Forthe full hub vector. However, computing and storinfg

p.q € V, we definer/(q) as a restriction of,(q) that
considers only tours which pass through some pgage
H in equation ). That is, a pagé € H must occur on
t somewhere other than the endpoints. Precisglyy)
is written as

> Pltle(1 - )™

t:p~>H~»q

(6)

where the notation : p ~~ H ~» ¢ reminds us that
passes through some pageHn Note thatt must be of
length at leas?. In this paperH is always the set of hub

explicitly could be as expensive &g itself. In the next
section we show how to encod@f so it can be com-
puted and stored efficiently.

4.3 Hubs Skeleton

Let us briefly review where we are: In SectiBnve rep-
resented PPV'’s as linear combinations of hub veatgrs
one for eaclp € H, so that we can construct PPV’s
quickly at query time if we have precomputed the hub
vectors, a relatively small subset of PPV’'s. To encode
hub vectors efficiently, in SectioA.2 we said that in-

pages, ang is usually a hub page (until we discuss the stead of full hub vectors,,, we first compute and store

web skeleton in Sectio#.4.3.

The definition here of inverse P-distance differs slightly from the the distribution is

concept of expected-distance in 7], where tours are not allowed to
visit ¢ multiple times. Note that general expectédiistances have the
form >~ , P[t]f((t)); in our definition, f(z) = ¢(1 — ¢)®.

only partial vectorgr, — r{f ), which intuitively account
only for paths that do not pass through a pagé/di.e.,
“blocked” byHf). Computing and stor-
ing the difference vectorf efficiently is the topic of this
section.



It turns out that the vectar;’ can be be expressed in Partial Vectors
terms of the partial vectorgy, — r1), for h € H, as b
shown by the following theorem. Recall from Secti®n p@
thatx;, has valuel ath and0 everywhere else.

Theorem (Hubs). Foranyp e V, H C V,

TIIJ{ - % Z (rp(h) — - 2p(h)) (rh — R — czn)
heH
(8)

In terms of inverse P-distances (Sectir), the Hubs

Theorem says roughly that the distance from pagde

any pagey € V throughH is the distance,(h) from

p to eachh € H times the distancey(q) from h to g,

correcting for the paths among hubsigj(q). The terms Hub Vector

¢ - zp(h) andcxy, deal with the special cases whetor

q is itself in H. The proof, which is quite involved, is in

AppendixD. P
The quantity(r, — vf!) appearing on the right-hand

side of @) is exactly the partial vectors discussed in

Section4.2 Suppose we have computeg(H) =

{(h,rp(h))| h € H} for a hub page. Substituting the

Hubs Theorem into equation, we have the following  Figyre 1: Intuitive view of the construction of hub vec-

Hubs Equatiorfor constructing the hub vectot, from o from partial vectors and the hubs skeleton.
partial vectors:

4.4 Discussion
441 Summary

¢ In summary, hub vectors are building blocks for PPV'’s

(9) corresponding to preference vectors based on hub pages.
Partial vectors, together with the hubs skeleton, are
Souilding blocks for hub vectors. Transitively, partial vec-
tors and the hubs skeleton are building blocks for PPV’s:
they can be used to construct PPV’s without first materi-
alizing hub vectors as an intermediate step (Sedidh
rNote that for preference vectors based on multiple hub
pages, constructing the corresponding PPV from partial
vectors directly can result in significant savings versus
constructing from hub vectors, since partial vectors are
shared across multiple hub vectors.

This equation is central to the construction of hub vector:
from partial vectors.

The setr,(H) has size at mostd |, much smaller
than the full hub vector,, which can have up te
nonzero entries. Furthermore, the contribution of eac
entryr,(h) to the sum is no greater thap(h) (and usu-
ally much smaller), so that small valuesgf k) can be
omitted with minimal loss of precision (Secti@). The
setS = {r,(H)|p € H} forms thehubs skeletongiv-
ing the interrelationships among partial vectors.

An intuitive view of the encoding and construction
suggested by the Hubs Equatid®) (s shown in Figure
1. Atthe top, each partial vectdry,, — r#?), including  So far we have made no assumptions about the set of hub
(rp — rf), is depicted as a notched triangle labeted pagesH. Not surprisingly, the choice of hub pages can
at the tip. The triangle can be thought of as representhave a significant impact on performance, depending on
ing paths starting &t, although, more accurately, it rep- the location of hub pages within the overall graph struc-
resents the distribution of importance scores computedure. In particular, the size of partial vectors is smaller
based on the paths, as discussed in SeetibnA notch  when pages ind have higher PageRank, since high-
in the triangle shows where the computation of a pariPageRank pages are on average close to other pages in
tial vector “stopped” at another hub page. At the centerterms of inverse P-distance (Sectibr), and the size of
a partr,(H) of the hubs skeleton is depicted as a treethe partial vectors is related to the inverse P-distance be-
so the “assembly” of the hub vector can be visualizedtween hub pages and other pages according to the Hubs
The hub vector is constructed by logically assemblingTheorem. Our intuition is that high-PageRank pages are
the partial vectors using the corresponding weights in theyenerally more interesting for personalization anyway,
hubs skeleton, as shown at the bottom. but in cases where the intended hub pages do not have

4.4.2 Choice ofH



high PageRank, it may be beneficial to include somes.1 Decomposition Theorem

high-PageRank pages I to improve performance. We Recall the random surfer model of Sectibninstanti-

ran experiments confirming that the size of partial VeC-_iad for preference vectar = ,, (for pagep’s view

tors is ”."“Ch smaller using high-PageRank pages as hu%sf the web). At each step, a surferteleports to page
than using random pages.

p with some probabilitye. If s is atp, then at the next
step, s with probability 1 — ¢ will be at a random out-
neighbor ofp. That is, a fraction1 — C)W of the
time, surfers will be at any given out-neighbor gf one

The techniques used in the construction of hub vectorSteP after teleporting tp. This behavior is strikingly

can be extended to enable at least approximate personeﬁ'—m"ar to the model instantiated for preference vector
1

ization on arbitrary preference vectors that are not necest’ = 150 3.2 o, (). Where surfers teleport di-
sarily based orf{. Suppose we want to personalize on arectly to eachO;(p) with equal probabilitym. The
pagep ¢ H. The Hubs Equation can be used to constructsimilarity is formalized by the following theorem.

frf from partial vectors, given that we have computed
rp(H). As discussed in Sectioh3, the cost of comput-

4.4.3 Web Skeleton

Theorem (Decomposition).For anyp € V,

ing and storing-,(H) is orders of magnitude less than (1-¢) 10G)!
rp. ThoughrF is only an approximation te,, it may Tp = 00| Z TO;(p) T CTp (10)
i=1

still capture significant personalization information for a
properly-chosen hub séf, asw'f can be thought of as The Decomposition Theorem says that the basis vector
a “projection” ofr, onto H. For example, iff contains 7 for p is an average of the basis vectorg, ,,) for

pages fronDpen Directoryr can capture information its out-neighbors, plus a compensation factey,. The

p .. .
about the broad topic af,,. Exploring the utility of the  proof is in AppendixB.
web skeletoV = {r,(H) |p € V'} is an area of future The Decomposition Theorem gives another way to
work. think about PPV's. It says thats view of the web )

is the average of the views of its out-neighbors, but with

extra importance given tpitself. That is, pages impor-
5 Computation tant in p’s view are eitherp itself, or pages important

in the view of p’s out-neighbors, which are themselves
In Section4 we presented a way to construct hub vec-“endorsed” byp. In fact, this recursive intuition yields
tors from partial vectorgr, — rf), forp € H, and the an equivalent way of formalizing personalized PageRank
hubs skeletors = {r,(H)|p € H}. We also discussed scoring: basis vectors can be defined as vectors satisfy-
the web skeletoW = {r,(H)|p € V}. Computing ing the Decomposition Theorem.
thesepartial quantitiesnaively using a fixed-point itera- While the Decomposition Theorem identifies rela-
tion [10] for eachp would scale poorly with the number tionships among basis vectors, a division of the computa-
of hub pages. Here we present scalable algorithms thdton of a basis vector,, into related subproblems for dy-
compute these quantities efficiently by using dynamicnamic programming is not inherent in the relationships.
programming to leverage the interrelationships amongd-or example, it is possible to compute some basis vec-
them. We also show how PPV’s can be constructed froniors first and then to compute the rest using the former
partial vectors and the hubs skeleton at query time. All ofas solved subproblems. However, the presence of cycles
our algorithms have the property that they can be stoppeth the graph makes this approach ineffective. Instead,
at any time (e.g., when resources are depleted), so th@ur approach is to consider as a subproblem the compu-
the current “best results” can be used as an approximdation of a vector to less precision. For example, hav-
tion, or the computation can be resumed later for in-ing computedro, ) to a certain precision, we can use
creased precision if resources permit. the Decomposition Theorem to combine thg, ,)'s to

We begin in Sectior.1 by presenting a theorem un- COMputery, to greater 'precision. This approaqh has the

derlying all of the algorithms presented (as well as thedvantage that precision needs not b'e fixed in advance:
connection between PageRank and inverse P-distance, { Process can be stopped at any time for the current
shown in AppendixC). In Section5.2, we present three  P€St answer.
algorithms, based on this theorem, for computing gen- . . .
ergl basis vectors. The algorithms in Sect'ﬁoﬁpare r?o? 5.2 Algorithms for Computing Basis Vectors
meant to be deployed, but are used as foundations foiVe present three algorithms in the general context of
the algorithms in Sectiof.3for computing partial quan- computing full basis vectors. These algorithms are pre-
tities. Section5.4 discusses the construction of PPV'’s sented primarily to develop our algorithms for comput-
from partial vectors and the hubs skeleton. ing partial quantities, presented in SectmB. All three



algorithms are iterative fixed-point computations thatquantities in SectioB.3). The sizes 0Dy [p] andEy[p]
maintain a set ofntermediate result§ D[], Ex[*]).  grow with the number of iterations, and in the limit they
For eachp, Dg[p] is a lower-approximation of, on  can be up to the size ef,, which is the number of pages
iteration k, i.e., Di[p](¢) < rp(q) forall ¢ € V. We  reachable fromp. Intermediate score§Dy[*], Er[*])
build solutionsDyg[p] (k = 0,1,2,...) that are succes- will likely be much larger than available main mem-
sively better approximations te,, and simultaneously ory, and in an implementatiofDy,[], Ey[+]) could be
compute the error components,[p], where Ex[p] is  read off disk and D1 [*], Er1[*]) written to disk

the “projection” of the vectofr, — Dy [p]) onto the (ac-  on each iteration. When the data for one iteration has
tual) basis vectors. That is, we maintain the invariant thabeen computed, data from the previous iteration may be

forallk > 0andallp € V, deleted. Specific details of our implementation are dis-
cussed in Sectiof.
Dy[p] + Y Eilpl(q)rg =7p (11)
qeV

Thus, Dy [p] is a lower-approximation of, with er- ~ 5.2.2  Selective Expansion Algorithm

ror ‘Z(IEV Ek[p](Q)rq’ = |Ex[pl] W? begin with Theselective expansion algorithimessentially a version
Do[p] = 0 and Eo[p] = x5, S0 that logically, the ap- o the naive algorithm that can readily be modified to
proximation is initially 0 and the error ig"p. To store  compute partial vectors, as we will see in Sectiod. 1
E and D efficiently, we can represent them . o

k[Pl k[Pl Y P We derive (Dg+1[p], Er+1[p]) by “distributing”

in an implementation as a list of their nonzero entries. h h hat is. B .
While all three algorithms have in common the use of € €Tor at each page (that is, £ [p](¢)) to its out-

these intermediate results, they differ in how they use th@elghbors tV'a thelt DeC(_)tmp(J[)_?j;qnon_ Thtiorem. tl?rec!sely,
Decomposition Theorem to refine intermediate results onfV€ compute results on iteratignusing the equations:
successive iterations.

_ It _is imp_ortant to nqte thgt the algorithms presented Dy 11[p] = Di[p] + Z c- Exlpl(qQzg (14)

in this section and their derivatives in Secti6r8 com- )

pute vectors to arbitrary precision; they are not approxi- B

mations. In practice, the precision desired may vary de- Eji1[p] = Exlp] — Z Eilpl(g)zq+

pending on the application. Our focus is on algorithms 9€Qx(p)

that are efficient and scalable with the number of hub 1—¢ 9@

vectors, regardless of the precision to which vectors are > 0w > Expl(@)zo,(q)
computed. 9€Qx(p) i=1

(15)
5.2.1 Basic Dynamic Programming Algorithm

In the basic dynamic programming algorithra new ba- ~ for a subseQx(p) C V. If Qi(p) = V for all &, then

sis vector for each page is computed on each itera- the error is reduced by a factor of— c on each iter-
tion using the vectors computed fpis out-neighbors ~ ation, as in the basic dynamic programming algorithm.
on the previous iteration, via the Decomposition The-However, it is often useful to choose a selected subset

orem. On iteratiork, we derive(Dy11[p], Exy1[p])  Of V asQi(p). For example, ifQx(p) contains then

from (D [p], Ex[p]) using the equations: pages; for which the errorEy [p](¢) is highest, then this
top-m scheme limits the number of expansions and de-
1—c |O(p)] lays the growth in size of the intermediate results while
Dypyq[p] = O@)] Z Dy [0;(p)] + cxf12)  still reducing much of the error. In Secti&n3.1, we will
i=1 compute the hub vectors by choosi@g(p) = H. The
1—¢ |O(p)] correctness of selective expansion is proven in Appendix
Epy1lp] = m Z Ey[0:i(p)] (13) F
i=1

A proof of the algorithm’s correctness is given in Ap-
pendixE, where the errofEy[p]| is shown to be reduced 5.2.3 Repeated Squaring Algorithm
by a factor ofl — ¢ on each iteration.

Note that although th&j [+] values help us to see the Therepeated squaring algorithris similar to the selec-
correctness of the algorithm, they are not used here in théve expansion algorithm, except that instead of extend-
computation ofDg[*] and can be omitted in an imple- ing (Dg41[*], Ex41[*]) One step using equation$4)
mentation (although they will be used to compute partialand (5), we compute what are essentially iteratin-



results using the equations a hub pagefl are never considered. Under this choice

of Qi(p), Di[p] + cEx[p] converges to(r, — rk)

Dy [p] = Dilp] + Z Ex[pl(¢)Dglg] (16) forall p € V. Of course, only the intermediate results
a€Qx(p) (Dg[p], Ex[p]) for p € H should be computed. A proof
is presented in AppendiA.
Baxlp] = Bxlp] = Z Erlpl@)eq+ This algorithm makes it clear why using high-
acQu ) (17) PageRank pages as hub pages improves performance:
> Exlpl(q)Exlq] from a pagep we expect to reach a high-PageRank page
a€Qx(p) q sooner than a random page, so the expansion from

will stop sooner and result in a shorter partial vector.
where Qr(p) € V. For now we can assume that

Qr(p) = V for all p; we will sthk(p) = Htocom- 532 Hubs Skeleton

pute the hubs skeleton in SectibrB.2 The correctness

of these equations is proven in Appen(ﬁ( where it While the hubs skeleton is a subset of the Complete web
is shown that repeated squaring reduces the error muc¥keleton and can be computed as such using the tech-
faster than the basic dynamic programming or selectivdlique to be presented in SectiérB8.3 it can be com-
expansion algorithms. i, (p) = V, the error is squared puted much faster by itself if we are not interested in the

on each iteration, as equatiahvj reduces to: entire web skeleton, or if higher precision is desired for
the hubs skeleton than can be computed for the entire
Ea[p] = Z E[p)(q)Ex[q] (18)  web skeleton.
qcv We use a specialization of the repeated squaring al-

gorithm (Section5.2.3 to compute the hubs skeleton,

As an alternative to takin@(p) = V, we can also use using the intermediate results from the computation of
the topm scheme of Sectiof.2.2 partial vectors. Suppos@Di[p], Ex[p]), for k& > 1,

Note that while all three algorithms presented can benave been computed by the algorithm of SectoB. 1,
used to compute the set of all basis vectors, they diffego thatz u Exlpl(q) < e for some erroe. We ap-
in their requirements on the computation of other vec- ply the repeated squaring algorithm on these results us-
tors when computing-,: the basic dynamic program- ing Q,(p) = H for all successive iterations. As shown
ming algorithm requires the vectors of out-neighbors ofin Appendixl, after: iterations of repeated squaring, the
p to be computed as well, repeated squaring requiregota| error| E; [p]| is bounded by(1 — ¢)2' + ¢/c. Thus,
results(Dy[q], Ex[q]) to be computed foy such that by varyingk andi, r,(H) can be computed to arbitrary
Ey[pl(q) > 0, and selective expansion computgsin-  precision.
dependently. Notice that only the intermediate results
(Dg[h], Ex[h]) for h € H are ever needed to up-
date scores forDg[p], and of the former, only the
In Section5.2we presented iterative algorithms for com- entries Dy[h](q), Ex[h](q), for ¢ € H, are used to
puting full basis vectors to arbitrary precision. Here wecomputeDy[p](¢). Since we are only interested in the
present modifications to these algorithms to compute th&ub scoresDy[p](q), we can simply drop all non-hub
partial quantities: entries from the intermediate results. The running time
and storage would then depend only on the size, 0ff )
and not on the length of the entire hub vectsys If the
restricted intermediate results fit in main memory, it is
possible to defer the computation of the hubs skeleton to
query time.

5.3 Computing Partial Quantities

e Partial vectorgr, — r[T),p € H.

e The hubs skeletof = {r,(H) | p € H} (which can
be computed more efficiently by itself than as part of
the entire web skeleton).

e The web skeletomV = {r,(H) |p € V}.
Each partial quantity can be computed in time no greatep.3.3 Web Skeleton

than its size, which is far less than the size of the hub]-0 compute the entire web skeleton, we modify the ba-
M e sic dynamic programming algorithm (SectiérR.1) to
compute only the hub scoreg(H ), with corresponding
savings in time and memory usage. We restrict the com-
Partial vectors can be computed using a simple speputation by eliminating entrieg ¢ H from the inter-
cialization of the selective expansion algorithm (Sectionmediate result§éDy [p], Ex[p]), similar to the technique
5.2.2: we takeQo(p) = V andQi(p) = V — H for  used in computing the hubs skeleton.

k > 0, forallp € V. Thatis, we never “expand” The justification for this modification is that the hub
hub pages after the first step, so tours passing througbcore Dy 1[p](h) is affected only by the hub scores

5.3.1 Partial Vectors



Dy [+](h) of the previous iteration, so thd®;1[p](h)  Pi,..., P, of equal size X = 10 in our experiments).
in the modified algorithm is equal to that in the basic al- The web graph, represented as an edgeHisis parti-
gorithm. Since|H| is likely to be orders of magnitude tioned intok chunksFE; (1 < i < k), whereE; con-
less tham, the size of the intermediate results is reducedtains all edges(p, ¢) for which p € P,. Intermedi-

significantly. ate resultsDy[p] and Ei[p] were represented together
as a listLg[p] = ((q1,d1,e1), (g2, d2, €2),...) where
5.4 Construction of PPV's Dy[pl(g-) = d. and Ey[p](q:) = e, forz = 1,2,....

Finally, let us see how a PPV for preference veator OMNY Pagesg. for which eitherd. > 0 ore. > 0
can be constructed directly from partial vectors and theVere included. The set of |r2t¢rmed|ate fes;”ﬁ*] was
hubs skeleton using the Hubs Equation. (Construction of@rtitioned intok? chunksLy”[«], so thatL;? [p] con-
a single hub vector is a specialization of the algorithmt@ins triples(q., d-, e-) of Lx[p] for whichp € P; and
outlined here.) Lets = ayp; + - - + a.p, be a prefer- 4= € P;. In each of the algorithms fqr computing par-
ence vector, wherg; € Hforl <i < 2. LetQ C H, tial quantities, only a single columlﬁ,*;’J [*] was keptin
and let memory at any one time, and part of the next-iteration
. resultsLy1[*] were computed by successively reading
_ in individual blocks of the graph or intermediate results
ru(h) = Zai (rp;(h) = ¢ 2p,(R)) (19) as appropriate. Each iteration requires only one linear
=t scan of the intermediate results and web graph, except
which can be computed from the hubs skeleton. Then théor repeated squaring, which does not use the web graph

PPV for u can be constructed as explicitly.
v = Z ai(rp, — v+ 6.1 Computing Partial Vectors
=t (20) For comparison, we computed both (full) hub vectors and
EZr(h)[(r—H— tial vectors f i izes &, using the selecti
w h—Th ) — cTh] partial vectors for various sizes &f, using the selective
¢ heo expansion algorithm witl, (p) = V (full hub vectors)
ru(h)>0 andQ(p) = V — H (partial vectors). As discussed in

Section4.4.2 we found the partial vectors approach to
be much more effective wheli contains high-PageRank
B]ages rather than random pages. In our experimgnts
ranged from the top000 to top 100, 000 pages with the
highest PageRank. The constanmtas set td).15.

To evaluate the performance and scalability of our
strategy independently of implementation and platform,

. N . . . . we focus on the size of the results rather than computa-
h for which, (h) is highest. Experimentation with this tion time, which is linear in the size of the results. Be-

scheme is discussed in Sectii3. Alternatively, the re- cause of the number of trials we had to perform and lim-

sult can be improved incrementally (e.g., astime permits} :
by using a small subsé&p each time and accumulating .tat|ons on resources, we comqued results only up to 6
iterations, for| H| up to 100, 000. Figure?2 plots the av-

the results. erage size of (full) hub vectors and partial vectors (recall
6 E . that size is the number of nonzero entries), as computed
xperiments after 6 iterations of the selective expansion algorithm,
We performed experiments using real web data fromwhich for computing full hub vectors is equivalent to the
Stanford’sWebBasg6], a crawl of the web containing basic dynamic programming algorithm. Note that the x-
120 million pages. Since the iterative computation ofaxis plots|H| in logarithmic scale.
PageRank is unaffected bgaf pagedi.e., those with no Experiments were run using a 1.4 gigahertz CPU on
out-neighbors), they can be removed from the graph and machine with 3.5 gigabytes of memory. Héf| =
added back in after the computatict0. After remov- 50,000, the computation of full hub vectors took about
ing leaf pages, the graph consisted of 80 million pages 2.8 seconds per vector, and ab®ud3 seconds for each
Both the web graph and the intermediate resultgpartial vector. We were unable to compute full hub vec-
(Dg[*], Ex[*]) were too large to fit in main memory, tors for |[H| = 100,000 due to the time required, al-
and a partitioning strategy, based on that presented ithough the average vector size is expected not to vary sig-
[4], was used to divide the computation into portions nificantly with |H| for full hub vectors. In Figur@ we
that can be carried out in memory. Specifically, thesee that the reduction in size from using our technique
set of pagesl/ was partitioned intok arbitrary sets becomes more significant 48| increases, suggesting

Both the termgry,, —r27) and(ry, —r£7) are partial vec-
tors, which we assume have been precomputed. The ter
crp, represents a simple subtraction frdm, — r{;’).

If @ = H, then(20) represents a full construction of
v. However, for some applications, it may suffice to use
only parts of the hubs skeleton to computéo less pre-
cision. For example, we can takg to be them hubs
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that our technique scales well with|. are averaged ovéf randomly-chosen hub vectors. Note
) that the x-axis is in logarithmic scale.
6.2 Computing the Hubs Skeleton Recall from Sectior6.1 that the partial vectors from

We computed the hubs skeleton fdi| = 10,000 by which the hubs vector is constructed were computed us-

running the selective expansion algorithmédterations  ing 6 iterations, limiting the precision. Thus, the error

usingQy(p) = H, and then running the repeated squar-values in Figure3 are roughlyl6% (ranging from0.166

ing algorithm for 10 iterations (Sectiorb.3.9, where  for m = 100 to 0.163 for m = 10,000). Nonetheless,

Qr(p) is chosen to be the top 50 entries under the topihis error is much smaller than that of the iterati®full

m scheme (SectioB.2.9. The average size of the hubs hub vectors computed in Secti@l, which have error

skeleton is9021 entries. Each iteration of the repeated (1 — ¢)® = 38%. Note, however, that the size of a vec-

squaring algorithm took about an hour, a cost that defor is a better indicator of precision than the magnitude,

pends only onH| and is constant with respect to the since we are usually most interested in the number of

precision to which the partial vectors are computed. pages with nonzero entries in the distribution vector. An
iteration-6 full hub vector (from Sectio®.1) for pagep

6.3 Constructing Hub Vectors from Partial Vectors contains nonzero entries for pages at most 6 links away

: from p, 93,993 pages on average. In contrast, from Fig-
Next we measured the construction of (full) hub vectorsure 3 we see that a hub vector containing 14 million

from _par'ual vectors and the hUbS,‘ skgleton. Note thqt ""onzero entries can be constructed from partial vectors
practice we may construct PPV’s directly from partial .
. . . in 6 seconds.

vectors, as discussed in Sectibal. However, perfor-
mance of the construction would depend heavily on th
user’s preference vector. We consider hub vector compj—7 Related Work
tation because it better measures the performance ben&he use of personalized PageRank to enable personal-
fits of our partial vectors approach. ized web search was first proposed 18] where it was

As suggested in Sectioh3, the precision of the hub suggested as a modification of the global PageRank algo-
vectors constructed from partial vectors can be varied atithm, which computes a universal notion of importance.
guery time according to application and performance deThe computation of (personalized) PageRank scores was
mands. That is, instead of using the entirersgid) in not addressed beyond the naive algorithm.
the construction of-,, we can use only the highest In [5], personalized PageRank scores were used to
entries, form < |H|. Figure3 plots the average size and enable “topic-sensitive” web search. Specifically, pre-
time required to construct a full hub vector from partial computed hub vectors corresponding to broad categories
vectors in memory versus, for |H| = 10,000. Results  in Open Directorywere used to bias importance scores,
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where the vectors and weights were selected according e We laid the mathematical foundations for construct-
to the text query. Experiments iB][concluded that the ing hub vectors efficiently by relating personalized
use of personalized PageRank scores can improve web PageRank scores taverse P-distancesn intuitive
search, but the number of hub vectors used was limited  notion of distance in arbitrary directed graphs. We
to 16 due to the computational requirements, which were  used this notion of distance to identify interrelation-
not addressed in that work. Scaling the number of hub  ships among basis vectors.

pages beyond 16 for finer-grained personalization is a di-

rect application of our work. e We presented a method of encoding hub vectors as
Another technique for computing web-page impor- partial vectorsand thehubs skeletanRedundancy
tance,HITS, was presented irg[. In HITS, an iterative is minimized under this representation: each partial

computation similar in spirit to PageRank is applied at ~ Vector for ahub pagerepresents the part pfs hub

query time on a subgraph consisting of pages matching ~ Vector unique to itself, while the sk_eleton specifies
a text query and those “nearby”. Personalizing based on how partial vectors are assembled into full vectors.
user-specified web pages (and their linkage structure in
the web graph) is not addressed by HITS. Moreover, the
number of pages in the subgraphs used by HITS (order
of thousands) is much smaller than that we consider in

this paper (order pf millions), and the computation.fr_om e We ran experiments on real web data showing the
scratch at query time makes the HITS approach difficult effectiveness of our approach. Results showed that
to scale. our strategy results in significant resource reduction

Another algorithm that uses query-dependent impor-  gver full vectors, and scales well witl#|, the de-
tance scores to improve upon a global version of impor-  gree of personalization.

tance was presented ifi]]. Like HITS, it first restricts
the computation to a subgraph derived from text match
ing. (Personalizing based on user-specified web pages
is not addressed.) Unlike HITS1]] suggested that im- The authors thank Taher Haveliwala for many useful dis-
portance scores be precomputed offline for every possieussions and extensive help with implementation.
ble text query, but the enormous number of possibilities
makes this approach difficult to scale. References
The concept of using “hub nodes” in a graph to en-
able partial computation of solutions to the shortest-path 11 NttP/www.google.com
problem was used ir] in the context of database search. [2] http://dmoz.org
That work deals with searches within databases, and on3] roy Goldman, Narayanan Shivakumar, Suresh Venkata-

e We presented algorithms for computing basis vec-
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pute partial vectors and the hubs skeleton efficiently.
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APPENDIX

A Proof: Linearity Theorem

Theorem (Linearity). For any preference vectous, andu., if v; andv, are the two correspond-
ing PPV’s, then for any constants, a., > 0 such thatw; + as = 1,

Q101 + Ve = (1 — ) A1 + apvs) + c(a1ug + asus)
Proof:

a1v1 + apvs = a1((1 — ¢)Avy + cuy) + as((1 — ¢) Avs + cus)
0[1(1 — C)A’Ul + ajcuq + Oég(l — C)A’Uz + ascus
= (1-0)A(aqv1 + agvs) + c(aquy + asus) O

B Proof: Decomposition Theorem

Theorem (Decomposition).For anyp € V,

(1 _ C) |O(p)‘
Tp = —— T0;(p) + CT
j2 |O(p)| ; (p) D

Proof: First we rewrite equationlj in an equivalent form. For a given preference veatpmwe
define thederived matrixA,, as

Ay=(1—-c)A+cU (21)

whereU is then x n matrix with U;; = u; for all 4, j. If we require thajv| = 1, we can write
equation {) as
v=A,v

Without loss of generality, let the out-neighborspdbe 1, ... k. Let A, be the derived matrix

corresponding te,,, and letA,, ..., A, be the derived matrices far = x4, . . ., x, respectively.
LetU, andUy, ..., Uy be the corresponding’’s in equation 21).
Let

(-0
vy, = TZri—i—cwp
i=1

Clearly, |v,| = 1. We need to show thad,v,, = v,, in which casev, = r,, since PPV’s are
unique (Sectio). First we have that:

k
1 —
Ayv, = Ap( kCZri—irca:p)
1=1

Using the identity

13



we have:

k
1—
Apv, = Z ¢ (A; — cU; + cUp)1r; + cApzy
i=1

i Z U,r; + i Z Upr; + cApzy

+ cApxy

CZ:I:z (1—c)exp+c((1 —c)A+ cUp)x,

+ (1 = ¢)exp+ (1 — ¢)cAzp, + Py

k
1 - 1
= CZrivL(l—c)cwp+c2wp+(1—c)c (A:cp—EZ:m)
i=1

i=1
-
= Zri+(1—c)cmp+02:1:p

i=1

k
1—
= CZrmchcp
=1

= vp O]

C Inverse P-distance
C.1 Relation to Personalized PageRank
The relationship between inverse P-distances and personalized PageRank scores is given by the
following theorem.
Theorem. Forall p,q € V,
r(q) = 1,(q)
Proof: Writing the Decomposition Theorem in scalar form for page/e get a set oh equations,
one for eachy € V, of the form

0)|
(1—-¢) ; r0,(p) () (if p# q)

rp(q) = o)
(1—c) Zl row(@) +c  (ifp=yq)
Let us now fixq, and consider the set aefequations, one for eaghe V, in the above form. By a
proof very similar to that given in7], it can be shown these equations have a unique solution, so
we need only show thaf (¢) satisfies these equations as well.

Clearly, if there is no path fromto ¢, thenr,(¢) = r,(q) = 0, S0 supposg can be reached from
p. Consider the tours starting atp and ending af in which the first step is to the out-neighbor
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O.(p). If p # q, there is a one-to-one correspondence betweentsarth tours’ from O (p) to ¢:
for eacht’ we may derive a correspondindpy appending the edge, O.(p)) at the beginning. Let
T be the bijection that takes eatHho the corresponding If the length oft’ is /, then the length of
t =T(t')isl + 1. Moreover, the probability of travelingis P[t] = Ioép)‘P[t’]. We can now split
the sum in §) according to the first step of the touto write

|O(p)]

i) = > S PIT()]e(1 - )T

z=1 t/: Oz(p)~q

1_ 10(p)|

= 00 D Z P[t’]c(l —¢)!®
2=1 ¢': O;(p)
|O(p)]

_ |Z7“

If p = ¢, then the same correspondence holds except that there is an extrdrooarmn to g = p
which does not correspond to any talstarting from arO. (p): the zero length tout = (p). The
length of this tour i®), and in this casé[t]c(1 — ¢)') = c. Thus

whenp = q. ]
C.2 Loop Factor

The use of inverse P-distances yields further insight into the fairness of PageRank scoring. Since
the global PageRank for a pagés just the uniform sunz;}:1 r»(q)/n, we see that the PageRank

of a pagey is the average, over all paggsof the inverse P-distance fromto ¢. The intuition

is that high-PageRank pages are on average “close” to other pages under this distance measure.
However, note that the summation &) {s taken over tours that may toughmultiple times. The

effect is that a pagecan influence its own PageRank (by a factor less thiapsimply by changing

its out-links. In particular, if a page with PageRanlPR(q) links to every page for which there

is a path tog (as are logically created for pages without out-links5n10]), then its PageRank
would be a factor: + (1 — ¢)PR(q) less than if it had linked to itself and no other page. This “loop
factor” can be quantified as(¢): under the definition that toursfrom p to ¢ may touchg only
once,r,(q) can be written as

rp(q) = 14(q) Z Pt](1 - C)l(t)

where the summation is independenty&f out-links. This is the expectefl-distance T] from p

to ¢, for f(x) = (1 — ¢)*. While the loop factor is likely insignificant for high-ranking pages, its
elimination (dividing byr,(¢) to get the expected-distance) may result in a fairer scoring among
pages with low PageRank.
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D Proof: Hubs Theorem

Theorem (Hubs). Foranyp e V, H C V,

a) rf = %hgq(rp(h) —c-x,(h)) (’rh —rf - cach)

b) r =215 (rp(h) —rl(h) —c-zy(h)) (Th — cxp)

heH

Proof of (a): The idea is to separate tourgoing throughH into two parts, everything up to the
last occurrence of a pagec H, and the rest. Let(¢), for tourst : p ~ H ~» ¢, denote the
beginning oft to the last occurrence of a pae= H whicht passes through, st{t) = (p,..., h).
Lety(t) be the rest, sq(t) = (h,...,q). Letn(t) = P[t]c(1 — ¢)'®) for short. Lets(t) be the set
of pages that passes through, so thgf (¢) can be written as

Z P[t] 1—c

t:p~q
s(t)NH#AD

Let us first partition the summation iB)(according ta3(t):

¢)®
= > 2P 22)

t1[t1=06(t) t:p~>H~>q
tip~H~q  B(t)=t1

For each, 3(t) is itself a tourt’ : p ~ h; conversely, eacH : p ~ his af(t) for somet, with the
exception of the zero-length totir= (p) in the special case whepec H. Thus we can group the
tourst by h and3(t) ending ath to rewrite @2) as:

T YT P

h€H t1:p~h t:p~~H~~q
l(t1)>0 B(t):t1

But P[t] = P[B(1)|Py(1)], andi(t) = I(5(1)) + 1(v(1)), sO

=33 > PB@IPH®)(1 - o000

h€eH ty:p~>h t:p~~H~~q
I(t1)>0 B()=t1

1Y Y ) X rt)

heH ti:a~h t:p~H~>q
l(t1)>0 ﬁ(t)ztl

There is a canonical bijection, between tours : p ~~ H ~~ g with 3(t) = t; and tourg’ : h ~> ¢
which do not pass througH (for which s(¢') N H = ()), with the exception of the zero-length tour
(g) wheng € H. Thatis,y, (t) = v(t) = t', so we can write each touast = v, ' (). Replacing
~(t) in the previous equation with(t) = v(v;,'(¢)) = ¢ and accounting for the possible zero-
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length tour, we have

:%Z Doty > w) —anle) Y w(t)

heH ty:p~h t':h~sq t'=(q)
1(t1)>0 s(E)NH=0

:%Z > )| Do w#) —wala)e

heH ty:p~h t':h~>q
1(t1)>0 s(t ) NH=0

But the set of tourg from & to ¢ which do not pass through is the set of tours from to ¢ minus
the set of tours fromk to ¢ which pass througli/. Thus,

-y ml)(Z UOENDY w(t')—c-wh@)

he€H ty:p~h t/:h~~q t/:h~s Hamg
1(t1)>0
1 H
= Do > w(t) (rala) = i (a) — ¢ nla)
h€H ty:p~h
I(t1)>0

Finally,
Z m(t1) = rp(h) — - zp(h)

t1:p~h
l(tl ) >0

wherec-z,(h) accounts for the possible toyr= (p) whenp = h, for which P[t;]c(1—c)'®) = ¢,
and we have
1

rl(a) = = D7 (rylh) = ¢y (1) (rala) = il () — ¢~ 24(0))
heH
This equation written in vector form is the Hubs Theorem (a). O

Proof of (b): The idea is to separate tourgoing through# differently: everything up to the first
(instead of last) occurrence of a pagec H, and the rest. Let(¢), for tourst : p ~~ H ~> ¢,
denote the beginning of to the first occurrence of a pade € H which ¢t passes through, so
B(t) = (p,...,h). Lety(t) be the rest, sq(t) = (h,...,q).

Let us first partition the summation i6)(according tOy( )'

&)l
= > > Pl (23)

ta|to="(t) t:ip~>H~~q
tip~Hq y(H)=t2

For each, v(t) is itself a tourt’ : h ~~ ¢; conversely, eacH : h ~ ¢ is av(t) for somet, with the
exception of the zero-length totir= (¢) in the special case whegec H. Thus we can group the
tourst by h and-~(t) beginning ath to rewrite @3) as:

=2 2. 2, Fll1-9"

h€H to:h~~q t:p~~H~~q
I(t2)>0 ~(t)=t2

17



But Plt] = PIAOIPL(®)], andi(t) = L(A(1) + 1((1)), s0
H@=" 3 Y PBOPHE1 - o0

h€H to:h~>q t:p~~H~~q
I(t2)>0 ~(t)=t2

SN Y A Y w(60)

hEH to:h~q t:p~>H~~q
1(t2)>0 v(t)=t2

There is a canonical bijectiof,, between tours : p ~~ H ~» ¢ with v(¢t) = t, and tours
t' : a ~ h which do not pass througH (for which s(¢) N H = (), with the exception of the
zero-length tourp) whenp € H. Thatis,f;,(t) = ((t) = t/, so we can write each toudras

t = 3, (t'). Replacings(t) in the previous equation with(t) = 3(3;,'(t')) = ¢’ and accounting
for the possible zero-length tour, we have

1
HOEES S DRI D SEEIRERD SEI()

h€H ta:h~>q t':p~~h t'=(p)
1(t2)>0 s(t"YNH=0

1

IS S | X -

heH to:h~q t':p~h

1(t2)>0 s(t"YNH=0

But the set of tours from p to ~ which do not pass through is the set of tours fromp to A minus
the set of tours fronp to ~ which pass througl/. Thus,

HOEED DRI ( PORIGEEDY “’f')‘c"””(h))

h€EH ta:h~>q t':p~~h t':p~~H~~h
I(t2)>0
1
= 0D wlte) (rp(h) = rfl(h) — ¢ wp(h))
h€EH to:h~~q
I(t2)>0

Finally,
> wlta) = rala) — ¢ walg)

to:h~>q
l(t2)>0

wherec- x;,(q) accounts for the possible totr= (q) wheng = h, for which P[t,]c(1—c)!(®2) = ¢,
and we have

@) = = 3 () = o1 (8) = 2y (1) (1) — ¢ ()

heH

This equation written in vector form is the Hubs Theorem (b). O
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E Proof: Basic Dynamic Programming Algorithm

To prove correctness of the basic dynamic programming algorithm, we need to show that for all
k>0andp € V, Dg[p] +_ oy Ex1[pl(q)Tq = Tp, and that the sequengdy [p] } converges to

0 ask tends towards infinity, which implies thd®[p] converges ta-,. In particular,| Ex[p]| =

(1 — ¢)*. The proof is by induction o#. The case fok = 0 is obvious, so suppose the claim is
true fork, for somek > 0. First we show thaDy.1[p] + >_ oy Er+1[p(¢)Tq = 7p!

1—c
Dy11[p] + ;EkH[P](Q)Tq =00 ; Di[Oi(p)] + cxp + %; o 22:1: Ep[Oi(p)](q)7q
|O(p)]
cp + &)(_p; > ( kOi(p)] + ZEk[Oz(p)](Q)TQ>
) : q
— o) ; TO;(p) T CTp

where the last step is justified by the Decomposition Theorem. Now we showHhat [p]| =
(1 — )kt

1— IO( )|
|Exta[p]| = |O )l Z k[0:i(p)]
Z 1[0:(p)]]
1— ¢ |O(p )I .
“1o0) & 179
1-c i
— (1 . C)k+1 N



F Proof: Selective Expansion Algorithm

As in the proof of the basic dynamic programming algorithm, we first show at, [p] +
> sev Beralpl(q)rq = 7 for an arbitraryQ.(p) € V-

Dk+1 [p] + Z EkJrl [p] (q)’f'q

= (Dk[PH > C-Ek[p]w)wq)
q€Qr(p)
\O(q
+ Z (Ek[p] - Z Ek[pKQ)wq Z | | Z CBO (q))( /)’r'q/
eV 9€Qw(p)
= (Dk[p] 3 Ek[p]<q'>rqf) + Y o Edl@)e,
q'eV 9€Qx(p)
| (9)]
= D Blpl@ze(d)re + ) Z Z Elp)(0)70,)(¢) ¢
q'€V qeQr(p) '€V qeQu( i=1

By the inductive hypothesis,

Di[p]+ Y Exlpl(d)rq =75

qev

so we need only show that the latter terms cancel. Sipeg) = 1 if ¢ = ¢’ and0 otherwise, and
similarly for zo,(4)(¢'), we have

Y Y El@zg(d)rg = > Exlpl(a)rg
q'€V qeQu(p) 4€Qr(p)
and

|O(Q)|

) Ex[pl(9)z0,q)(¢)re =

7€V qeQy( =1 q€Qxr(p)

By the Decomposition Theorem,

¢ - Bylp)(q)q + % > Eulpl(a)ro, = Eulpl(a)rs

for all ¢ € Qr(p), which shows that the terms indeed cancel.

> sy Erlpl(q) each iteration, the error decreases by
¢ qconp Erlpl(q) each iteration. Thus, any choice @f;(p) containing a maximal paggsuch
that E[p|(q) = max{Ex[p|(q) | ¢ € V'} ensures that the error tends towabdsn particular, such

is the case if).(p) = V or Qx(p) is the topm > 0 pages; with the highestEy[p](q). O
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G Proof: Repeated Squaring Algorithm

To verify the correctness of the repeated squaring algorithm, we show Iibafp] +
Y sconr Earlpl(@)rg = 7, for an arbitraryQ, (p) C V:

Dao[p] + ) Exclpl(q)rq = Dilp] + > Ex[pl(9) Drlq] + Z (Z Ex[p] )) Tq

= D[p] + > Exlpl(@)Drla]l + ) > Exlpl( (@)ry
qeVv qeV q'eV

= Di[p] + > Exlpl(g) (Dk[Q] + Ek[Q](q’)"’q'>
qeV q' eV

= Dy[p] + ) Ex[pl(9)rq

As in the proof of the selective expansion algorithm, the error tends towardg,Q;ij contains the
topm > 0 pages; with the highest=,[p|(q). If Qx(p) = V, the error is squared on each iteration,
for if | Ex[*]| = €, using equationi8 we have:

|Eaklpll = | Exlpl(q)Exla]

qeV

= > Epl(9)|Exlq]]

qeVv

= ) _Eipl(g)e

qeV

= ¢/ Ex[p]|

Clearly, for all but the first two iterations, repeated squaring reduces error much faster than the
decay factor ofl — ¢ (for both the basic dynamic programming and selective expansion algorithms)
whenQx(p) = V. O]

H Proof: Computation of Partial Vectors
We first show that the following hold for all > 1 andp,q € V:

Dilpl(g) = Y Pltle(1—c)'® (24)
t:p~~q
l(t)y<k
s'(t)NH=0

(X PH(1-o'"  (fq¢ H)
t:p~~q
1(t)=k
. s(t)NH=0
Exlpl(q) = S Pl - C)l(t) (if ¢ € H) (25)
1<i0
\ s(t)NH=0
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wheres(t) is the set of pages appearing oother than at the endpoints (i.e., pages whipasses
through), ands’(¢) is the set of pages appearing tother than at the beginning. Consider the
case fork = 1 (recall that all pages are expanded on iteratipnThe only tours in 24) are the
zero-length tourg = (p) whenp = ¢ (which pass through no hubs), for whiéht]c(1 — ¢)"*) =
¢ = Di[p|(q). The onIy tours in 25) aret = (p,q) whengq is an out-neighbor op, for which
P[t](l - C)l(t) - |O( )‘ Ek[ ]( )

Now suppose for induction that equatio2gland @5) hold for somet > 1. By equation {4)
with Qx(p) = V — H, the difference betweeR,. . [p|(¢) andDy[p](q), forq ¢ H, is Dy11[p|(q) —
Dylpl(q) = c¢- E1[p](q). By the inductive hypothesis, this difference can be written as

¢ Exlp jg: Pt 1——c

L:ip~g
1(t)=k
s(t) NH=0

Sinceq ¢ H, the restrictiors(t) N H = () is equivalent tos'(¢) N H = §), so that
Dia[pl(q) = Dilpl(a) + ¢ - Ex[p](q)
= 3 PHel—o+ S Plte(l - )

t:p~>q L:ip~>g
1(t)<k )=k
s'(H)NH=0 s'(t)NH=0
= > Pltle(1—0o)®
t:p~>q
I(t)<k+1
s'(H)NH=0
Ifge H
Dialpl(q) = Dilpl(q) = D Plle(1—¢)@ = > Pltle(1—c)'®
t:p~>q t:p~~q
1(t)<k 1(t)<k+1
s' () NH=0 s' () NH=0

since there is no tour: p ~~ ¢ with [(¢) > 0 for which s'(t) N H = 0.
Next we show that

Epnlpl@)= ) PH(1—c"

t:p~>q
1(6) =41
s(t)NH=0

for ¢ ¢ H. By equation 15) with Qx(p) =V — H, we have

Bl = Y g Bla) (26)
¢ e(V-H)NI(q)

since only the expansion of the in-neighbors;afan contribute td;.[p](¢), and of these, only
the ones not irff are expanded. Expandittg.[p](¢’) using the inductive hypothesi2®) becomes

Baabl= Y oon S PO o

/
q’E(VfH)ﬁI(q) ’ (q )| t’:pwq’
1t =k
s (t)NH=0
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where we have replacedt’) in the summation withy'(¢'), sinceq’ ¢ H. We want to show that

this is equal to
> P -e)® (27)
t:p~q
1(t)=k+1
s(tyNH=0
Consider the set of tours: p ~~ ¢, with [(t) = k + 1 ands(t) N H = (, for which the last
step is fromg’ € (V — H) N I(q) to q. There is a one-to-one correspondence betweenisact
tourst’ : p ~ ¢ of lengthk with s'(t) N H = (): for eacht’ we may derive a correspondindy
appending the edgg’, ¢) at the end. Lef be the bijection that takes eatHho the corresponding
t. If the length oft’ is [, then the length of = T'(#') is{ + 1. Moreover, the probability of traveling
tis P[t] = mP[t’]. Thus we can split the summation &7 according ta; to rewrite it as

ooPHa-o = > 3 PI))(1 - oD

L:p~~q de(V-H)NI(q) t':p~q
l(t):k+l l(t,):k
s(t)NH=0 s'(t"YNH=0

(28)

_ l-c 11 — o))
2 o 2 P9

q'e(V-H)NI(q)

which is what we wanted to show.

Now we show that
Eria(pl(q) = Z Pt](1 - C)l(t)

t:p~~q
1<I(t)<k+1
s(t)NH=0

for ¢ € H. By equation {5) with Qx(p) =V — H,

Bl = BB@+ Y 5esAbl@)

q'e(V-H)NI(q)

“Bb@+ Y g X Pa-o)

Equation 28) still applies, and we have

Bralpl(q) = Eclpl(e) + ) Pi)(1— o)

t:p~q

I(t)=k+1
s(t)NH=0
= Y PHI-0W+ > P(1-o)®
t:p~q t:p~>q
1<i(t)<k 1(t)=k+1
s(t) NH=0 s(t)NH=0
= > PHa-o®
t:p~>q
1<I(t)<k+1
s(t)NH=0
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which completes the proof of equatior& and @5).
Finally, we show that for alf € V', Dy [p](q)+c- Ex[p](q) converges te,(¢) —r}/ (¢) ask — co.
If ¢ ¢ H, thenEy[p|(q) — 0 ask — oo, and

Di[p)(q) + ¢~ Ex[pl(q) = Dilpl(q) + Y Pltle(l — )" — r,(q) — rl'(q)

t:p~~q
I(t)<k
s (H)NH=0

sinces’(t) N H = s(t) N H wheng ¢ H. If ¢ € H, then

Dilpl(q) + ¢+ Ex[pl(q) = Y Plle(t—c)'@+ Y Plt]e(1 —c)'®

t:p~=q t:p~=q
I(t)<k 1<i(t)<k
s'(t)NH=0 s(t)NH=0

Wheng € H, §'(t) N H # 0 unlessp = g andt = (p). Thus,

Dy[p)(q) + ¢~ Ex[pl(q) = c- :Ep(q) + Z P[t]e(1 — c)l(lt)

t:p~q
1<i(t)<k
s(t)NH=0
Z P[t]e(1 - ¢)!
t:p~q
0<I(t)<k
s(t)NH=0
which converges to,(q) — ;' (q) ask — oc. O

| Proof: Computation of the Hubs Skeleton

Let (D;[p], E;[p]) denote the results aftéiterations of repeated squaring, so that the intermediate
results left by selective expansion correspond+o0.

The error initially associated with hub pages, . ,; Eo[p|(%), is bounded byl — c because the
first step of selective expansion expands all pages (Sestibg. By equation 17) with Q;(p) =
H, the error assomated with hub pages on iteration1 of repeated squaring,. . ; Ei[pl(q), is

bounded by1—c)*. Moreover, the error associated with non-hub pades,, Li[pl(q), increases
by at most(1 — ¢)? quH E;_1]p|(q) compared to the previous iteration. Using a geometric series
to bound}_ ., Ei[p](q), the total errot E;[p]| of iterationi is bounded by1 — o) +efe. O
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