

Identifying “Best Bet” Web Search Results
by Mining Past User Behavior

Eugene Agichtein
Microsoft Research
Redmond, WA, USA

eugeneag@microsoft.com

Zijian Zheng

Microsoft Corporation
Redmond, WA, USA

zijianz@microsoft.com

ABSTRACT

The top web search result is crucial for user satisfaction with the
web search experience. We argue that the importance of the
relevance at the top position necessitates special handling of the
top web search result for some queries. We propose an effective
approach of leveraging millions of past user interactions with a
web search engine to automatically detect “best bet” top results
preferred by majority of users. Interestingly, this problem can be
more effectively addressed with classification than using state-of-
the-art general ranking methods. Furthermore, we show that our
general machine learning approach achieves precision comparable
to a heavily tuned, domain-specific algorithm, with significantly
higher coverage. Our experiments over millions of user
interactions for thousands of queries demonstrate the
effectiveness and robustness of our techniques.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process,
Relevance feedback, Information filtering; H.3.3 [Online
Information Services]: Commercial services, Web-based
services

General Terms
Algorithms, Measurement, Design.

Keywords
Web search ranking, user behavior mining, web usage mining.

1. INTRODUCTION
Web search users are inexorably drawn to the top search result,
often irrespective of the relevance of the document for the query.
Furthermore, recent studies showed that users often do not
examine lower-ranked results [12]. Hence, relevance at the top
rank of the returned result list disproportionately affects user
experience in web search.

The problem of selecting a good top result has been popularized
by Google with the “I am feeling lucky!” button that

automatically returns the top ranked document instead of a result
list. We believe that for a large class of queries, we can
automatically determine whether to propose such a “best bet”
result, and what the result should be, by mining past user
interactions with the search engine.

Specifically, we focus on the important class of queries usually
referred to as “Navigational” [5]. These queries are submitted in
order to get to a specific website without typing the actual URL.
For these queries, the top result is often the destination a user is
looking for. Clearly, many queries do not have such “best bet”
results, and part of the problem is to identify the queries for which
providing a specialized “best bet” result would help.

We consider different approaches for this problem. The natural
and intuitive approach is to simply improve the ranker, e.g., by
tuning the ranker to optimize accuracy of all top result. A related
approach is to incorporate information from past user behavior to
improve the overall ranking for previously submitted queries [1,
2]. A practical and effective variation of this general approach is
to analyze past user behavior to propose “best bet” URLs using a
set of rules created by a domain expert. Finally, and this is the
approach we propose, we could automatically learn to detect “best
bet” results and appropriate queries simultaneously by mining the
past interactions with the search engine. Specifically, our
contributions include:

• An investigation into general problem of representing user
behavior such as to make it particularly amenable for
suggesting the “best bet” search results (Section 3)

• Effective methods for incorporating user behavior into ranking
and classification of search results (Section 4).

• Large-scale evaluation of the alternatives over millions of user
interactions and thousands of queries (Section 6).

We review the related work in Section 7, and summarize our
findings in Section 8, which concludes the paper.

2. THE IMPORTANCE OF TOP RESULTS
As we discussed, the top search result is disproportionably more
important than the lower-ranked results. Consider a frequent
query “bank of america” that is submitted to our search engine
(Figure 2.1). This query is typically considered “Navigational”
(i.e., a user wants to be directed to the appropriate website). Such
queries account for nearly 30% of unique queries submitted [5,
19]), and an even larger fraction of queries if we consider the
frequency of each query. As Figure 2.2 shows, the overwhelming
majority of users prefer the top result (The official Bank of
America website), which they might use to perform transactions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD'06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008...$5.00.

or navigate to specific areas of the site. In this case, the ranking is
perfect, in the sense that the top result satisfies the search need for
more than 90% of the users. This example suggests that while it is
important to return relevant results in general, returning a correct
result in the top position for navigational queries can significantly
improve the user experience.

Figure 2.1: Sample set of results for query “bank of America”.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 3 3 5 6 7

Result position

R
el

at
iv

e
cl

ic
k

fr
eq

ue
nc

y

Figure 2.2: Click frequency distribution for query “bank of
america”, with the top result (www.bankofamerica.com)
receiving more than 90% of all clicks.

Furthermore, the top result in web search has another important
property: users have a strong bias towards clicking on the top
result. Figure 2.3 shows the relative clickthrough frequency for
more than 120,000 searches performed for 3,500 queries
randomly sampled from query logs over a three week period. The
queries were sampled across all query frequency ranges, to

include a representative sample of both rare and frequent queries.
The aggregated click frequency at result position p is calculated
by first computing the frequency of a click at p for each query
(i.e., approximating the probability that a randomly chosen click
for that query would land on position p). These frequencies are
then averaged across queries and normalized so that relative
frequency of a click at the top position is 1. The resulting
distribution agrees with previous observations about the bias in
clicking top ranked results – users click more often on results that
are ranked higher. Furthermore, there is a large bias towards the
top result – the click frequency is nearly twice higher than on the
next (second) result.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10
result position

R
el

at
iv

e
C

lic
k

Fr
eq

ue
nc

y

Figure 2.3: Relative click frequency for top 10 result positions
over 3,500 queries and 120,000 searches.

This suggests that users may have such a strong bias towards the
top result that they may click on the top result even if it is not
relevant. Figure 2.4 reports the distribution of clicks on the
relevant and non-relevant documents for these queries, which will
motivate our emphasis on getting the top result correctly.
Specifically, we report the aggregated click distribution for
queries with varying Position of Top Relevant document (PTR).
For example, for queries with top relevant result in position 3, the
relative click frequency on the non-relevant results at position 1 is
higher than click frequency on the relevant results in position 3.
This indicates that users often click on the top result without
considering the relevant results ranked below the top position.

0

0.05

0.1

0.15

0.2

0.25

1 2 3 5
Result position

R
el

at
iv

e
cl

ic
k

fr
eq

ue
nc

y

PTR=2

PTR=3

PTR=5

Figure 2.4: Relative click frequency for queries with varying
PTR (Position of Top Relevant document).

For these reasons of impact on the web search experience, we
specifically focus on the problem of returning an excellent “best
bet” result in the top position when appropriate – i.e., when an
overwhelming majority of users had exactly this result in mind
when issuing a query. Specifically, our goal is to identify pairs of
queries and corresponding results <q,u> such that past user
interactions with the query q clearly indicate that users
overwhelmingly prefer the result u over all other results for this
query. Note that this problem is different from generic ranking in
the sense that we do not propose a “best bet” result for every
query, but rather for only the queries for which we can
confidently predict a likely correct candidate. Furthermore, not all
queries have one “best bet” result that could be returned. For
example, a query “data mining research” does not have a best bet
result, as there may be multiple relevant results and sub-areas of
interest.
It is often difficult to directly understand the user intent.
However, we can observe, and mine, the past behavior of users
interacting with the search results as a proxy for understanding
the user intent and preferences for the results. In the next section
we describe how we represent the user behavior, to be used by
machine learning-based and domain specific algorithms
introduced in Section 4.

3. MINING USER BEHAVIOR
Although user implicit feedback (e.g., clicks) contains much
noise, we believe it also contains valuable information on what
users like. Our goal is to accurately interpret the noisy user
feedback obtained by tracing user interactions with the search
engine. Interpreting implicit feedback in real web search setting is
not an easy task. We characterize this problem in detail in [1,2],
where we motivate and evaluate a wide variety of models of
implicit user activities. The general approach is to represent user
actions for each search result as a vector of features, and then
train a ranker on these features to discover behavior patterns
indicative of relevant (and non-relevant) search results. We now
briefly summarize our features and model, and the machine
learning approach of interpreting user feedback (Section 3.2).

3.1 Representing User Actions as Features
We model observed web search behaviors as a combination of a
“background” component (i.e., query- and relevance-independent
noise in user behavior, including positional biases), and a
“relevance” component (i.e., query-specific behavior indicative of
the relevance of a result to a query). We design our features to
take advantage of aggregated user behavior. The feature set is
comprised of directly observed features (computed directly from
observations for each query), as well as query-specific derived
features, computed as the deviation from the overall query-
independent distribution of values for the corresponding directly
observed feature values.
A sample of features that we use to represent user interactions
with web search results is listed in Table 3.1. This information
was obtained via selective instrumentation from queries submitted
to our search engine. We include the traditional implicit feedback
features such as clickthrough counts for the results, as well as our
novel derived features such as the deviation of the observed
clickthrough number for a given query-URL pair from the
expected number of clicks on a result in the given position.

Presentation Features
ResultPosition Position of the URL in Current ranking
QueryTitleOverlap Fraction of query terms appearing in result Title
QueryURLOverlap Fraction of query terms appearing in the URL
QuerySummaryOverlap Fraction of query terms in result summary
Clickthrough and Browsing features
TimeToClick Seconds between query and click on the URL
TimeToFirstClick Seconds between query and click on any result
ClickFrequency Fraction of clicks for this query on this URL
ClickDeviation Deviation from expected click frequency
IsNextClicked 1 if there is a click below, 0 otherwise
IsPreviousClicked 1 if there is a click above, 0 otherwise
IsClickAbove 1 if there is a click above, 0 otherwise
IsClickBelow 1 if there is click below, 0 otherwise
TimeOnPage Result page dwell time
CumulativeTimeOnPage Cumulative time for all subsequent pages visited
Table 3.1: A sample of features used to represent user
behavior history for each query and result URL pair.

The features listed in Table 3.1 are not all the features used, but
give a good idea of the variety and the type of user behavior that
can significantly enrich the ranking model. We now briefly
overview our general approach for deriving a user behavior
model. We describe the actual methods in detail in Section 4.

3.2 Deriving a User Behavior Model
To learn to interpret the observed user behavior, we correlate user
actions (e.g., the features in Table 3.1) with the explicit user
judgments for a set of training queries. We find all the instances
in our session logs where these queries were submitted to the
search engine, and aggregate the user behavior features for all
search sessions involving these queries.
Each observed query-URL pair is represented by the superset of
features in Table 3.1, with values averaged over all search
sessions, and assigned one of the two labels, 1 or “best bet” and 0
or “not best bet”, as assigned by explicit relevance judgments.
These labeled feature vectors are used as input to the machine
learning and domain-specific algorithms, described next.

4. DISCOVERING BEHAVIOR PATTERNS
Describing user behavior as a set of features in the user behavior
“space” has an important advantage: instead of writing domain-
specific algorithms to interpret behavior, we can use general
machine learning methods that can be trained given labeled
examples of the behavior feature vectors for a given result, and
the target relevance label for the result. We first describe a
general machine learning framework for automatically tuning a
web search ranking function given labeled examples for a given
feature set. We then briefly describe how the behavior features
can be incorporated into ranking directly (Section 4.2). We then
describe a contrasting domain-specific approach developed for
selecting the best top result by interpreting past user interactions
(Section 4.3). Finally, we introduce our general machine learning
approach for the top-result problem that treats it as a binary
classification problem (Section 4.4). The methods described in
this section will be empirically evaluated in Sections 5 and 6.

4.1 Learning to Rank Web Search Results
A key aspect of our approach is exploiting recent advances in
machine learning, namely trainable ranking algorithms for web
search and information retrieval (e.g., [6, 11]). In our setting,
explicit human relevance judgments (labels) are available for a set
of web search queries and results. Thus, an attractive choice to
use a supervised machine learning technique is to learn a ranking
function that best predicts relevance judgments.
RankNet [6] is one such algorithm. It is a neural net tuning
algorithm that optimizes feature weights to best match explicitly
provided pairwise user preferences. RankNet uses a probabilistic
cost function that is robust to some noise in the labeling. While
the specific training algorithms used by RankNet are beyond the
scope of this paper, it is described in detail in [6] and includes
extensive evaluation and comparison with other ranking methods.
An attractive feature of RankNet is both train- and run-time
efficiency – runtime ranking can be quickly computed and can
scale to the web, and training can be done over thousands of
queries and associated judged results.
We use a 2-layer implementation of RankNet in order to model
non-linear relationships between features. Furthermore, RankNet
can learn with many (differentiable) cost functions, and therefore
can automatically learn a ranking function from human-provided
labels, an attractive alternative to heuristic feature combination
techniques. Hence, we will also use RankNet as a generic ranker
over the user behavior features described above.

4.2 Ranking with Behavior Features
Modern web search engines rank results based on a large number
of features, including content-based features (i.e., how closely a
query matches the text or title or anchor text of the document),
and query-independent page quality features (e.g., PageRank of
the document or the domain). In most cases, automatic (or semi-
automatic) methods are developed for tuning the specific ranking
function that combines these feature values.
Hence, a natural approach is to incorporate implicit feedback
features directly as features for the ranking algorithm. During
training or tuning, the ranker can be tuned as before but with
additional features. At runtime, the search engine would fetch the
implicit feedback features associated with each query-result URL
pair. This method is described in detail in [2], and has been shown
to significantly improve the search result relevance. This model
requires a ranking algorithm to be robust to missing values: a
large fraction of web search queries are unique, with no previous
implicit feedback available.
However, for the frequent, navigational queries that we target in
this paper, past user interactions are often available, suggesting
using intuitive rules defined over the behavior features to identify
the most promising “best bet” results.

4.3 Domain-Expert Analysis of User Behavior
We can have search domain experts analyze user query logs
including user behavior information, and develop ad hoc
algorithms and rules to create best bets. In this paper, we refer this
approach to DomainAlgorithms.
Depending on the quality and quantity of user logs processed, the
experience of the experts, as well as tools available, the quality of
the best bet results generated by DomainAlgorithms will vary.
This approach works in practice, and, as we will show

empirically, exhibits high accuracy. One advantage of
DomainAlgorithms is that it does not rely on labeled training
examples. Nevertheless, as the domain expert needs to analyze the
logs and implement the algorithms and evaluate the accuracy, the
resulting algorithms require significant effort to develop. As we
only use DomainAlgorithms for comparison purposes, we do not
describe the details of the rules constructed and incorporated into
the system.

4.4 Building a Classifier to Detect “Best Bets”
While the algorithms above are likely to have high precision, they
would have to be re-tuned and expanded as user behavior patterns
change, as general ranking improves, and as spammers figure out
ways to attack the rankings. In contrast, a more general trainable
data mining approach is likely to be more robust and will discover
regions in user behavior space that may not be easily engineered
or even detected by manual analysis and algorithm engineering.
We model the problem as binary classification, i.e., learning to
partition the user behavior space into regions where a result looks
like a “best bet” or not in the past user behavior. The classifier is
trained on user behavior feature vectors (Section 3.1) each with
associated label derived from explicit relevance ratings. A
classifier is then trained to partition the behavior feature space
into regions where a new result is likely to be a “best bet” because
users interact with the result similarly to known “best bet” results
(i.e., map to close positions in the user behavior space).
We experimented with different classifiers (e.g., SVM
implementations) and settled on a decision tree classifier, as the
most intuitive and easily interpretable and also with highest
accuracy on the development set. Additionally, a decision tree
model also makes it easy to extract rules that could be examined
and visualized to develop insights into user behavior. Specifically,
we use the WinMine implementation of deriving decision trees
from Bayesian networks, developed by Chickering [7] and
publicly available for download1.

5. EXPERIMENTAL SETUP
The experiments we report were all done on real data and with
real user feedback datasets. The reranking experiments were
performed off-line – i.e., by comparing the output of the systems
with previously labeled relevance judgments for the search
results. The methods compared are described next in Section 5.1
and are evaluated on the datasets in Section 5.2 using metrics in
Section 5.3. These settings will be used for reporting the
experimental results in Section 6.

5.1 Methods Compared
As we discussed the possible approaches to “best bet” result
generation include web search ranking over document and query
features, ranking that incorporates user feedback, and two
methods specifically designed for selecting top search results:

• RankNet: A state of the art web search ranking system trained
to order query results using features such as term match, match
positions, web topology features, and hundreds of other
features describing the similarity of a query to the candidate
search result document (Section 4.1)

1 http://research.microsoft.com/~dmax/WinMine/Tooldoc.htm

• RankNetExtended: The same RankNet system as above, but
with a richer feature set that incorporates the past user behavior
features into the ranking process (Section 4.2, reference [2])

• DomainAlgorithms: Algorithms or rules developed based on
domain expertise and selective query log and user interaction
analysis (Section 4.3)

• BehaviorClassifier: The general classification-based method
trained on examples of “positive” and “negative” user behavior
feature vectors for automatically discovering patterns in
behavior that indicate a “best bet” result (Section 4.4)

The methods described above span the range from algorithms
specifically designed for the “best bet” problem to general
ranking and classification algorithms that were automatically
tuned for the task. As we will show, the classification approach
can rival the heavily engineered algorithms in accuracy, while
also capturing cases not covered by manually developed
algorithms.

5.2 Datasets
An important contribution of our work is applying implicit
feedback techniques to important problems with real, noisy data
collected “in the wild” by real users interacting with a web search
engine. The actual ranking and evaluation experiments were done
off-line, i.e., using a static set of queries, results, and explicit
relevance judgments for the query results.
The judgments were collected by asking annotators to associate a
relevance label for each result retrieved in response to a randomly
selected set of queries from the search engine query logs. The
queries were sampled by token without replacement, i.e., frequent
queries have a high chance to be included, but the sample also
contains a large number of “tail”, or less-frequent queries.
For these experiments, we used 7,000 labeled queries that also
had at least one of the results clicked (i.e., had a minimum of user
interactions recorded). The user behavior data was collected over
the period of 8 weeks, which contained the total of 1.2 million
search requests for the queries considered, and the total of nearly
10 million user interactions with results of these search requests.
The queries and associated feature sets were split three-fold for
2/3 train/test split, and a three-fold cross validation was
conducted. The training and test sets were disjoint, randomly split
by query. On average the training set contained 4,600 queries and
12,800 labeled URLs, and the test set contained 2,300 queries and
6,400 URLs with explicitly judged relevance labels and were
clicked on at least once.

5.3 Evaluation Methodology and Metrics
The “best bet” result setting as introduced in Section 2 is
essentially a standard information retrieval problem, except that
we allow the system to avoid making a bet for “hard” queries, in
which case the overall system backs off to the generic ranking of
the results. Therefore, we use standard information retrieval
metrics of Precision at 1 and Recall at 1 (see Salton et al. [20]),
defined below, to compare the approaches.

Precision: the fraction of the queries for which a system proposed
a “best bet result”, where the proposed result was judged to be
a “best bet” for the respective query.

Recall: the fraction of the queries with at least one “best bet”
result that were successfully returned by a system.

The precision and recall metrics can also be combined into a
single number (e.g., F-measure), but for this evaluation we felt it
was important to explicitly consider the trade offs made between
optimizing the recall and precision of a “best bet” system.

6. RESULTS
We now experimentally compare the methods described in
Section 5.1 over the datasets and metrics of the previous section.
The main results are summarized in Table 6.1.
The generic ranking methods are substantially outperformed by
the methods specifically designed for the “best bet” problem. The
precision of RankNet on document and query features is 0.239.
Incorporating user behavior features into ranking boosts precision
by 10% absolute to 0.331 (for 38.5% precision gain). However, a
classifier specifically trained to recognize user behavior for “best
bet” results achieves precision of 0.753 (at slightly lower recall),
for precision gain of over 216%. Interestingly, the general
classification-based method performs nearly as well as the heavily
tuned set of domain-specific algorithms, but with much higher
recall (i.e., coverage): BehaviorClassifier recognizes almost 30%
of the “best bet” results, while DomainAlgorithms rules are able
to detect less than 20% of the queries with “best bet” results.

Method Precision Recall Precision Gain (%)
RankNet 0.239 0.239 -
RankNetExtended 0.331 0.331 38.5%
BehaviorClassifier 0.753 0.299 216%
DomainAlgorithms 0.758 0.185 218%

Table 6.1: Precision and Recall of the top results for
RankNet, RankNetExtended, BehaviorClassifier, and
DomainAlgori-thms methods over 2,300 test queries.

An important reason for the difference in precision exhibited by
the ranking methods is that a ranker must always propose a URL
for every query, whereas the BehaviorClassifier and
DomainAlgorithms only propose a result when past user behavior
indicates a promising candidate. Furthermore, the evaluation is in
a sense different from standard in that a reasonable, but not
perfect result would still be considered success in general ranking
evaluation, whereas in this evaluation we only consider a “best
bet” result (i.e., one that is likely to satisfy completely the
majority of users) to be relevant.
In summary, our results show a drastic improvement in precision
for the specialized “best bet” methods over general ranking
approaches, and also show that a general classification approach
can rival and outperform heavily-tuned domain-specific
algorithms with proper feature representation and training.

6.1 Discussion
Before we discuss the implications of our results, we first present
some intuitions into what the behavior models automatically
discovered by classifying past user behavior. A decision tree
fragment and a corresponding rule for one of the leaf nodes is
shown in Figure 6.1. In our implementation, the label of “1”
indicates a “best bet” search result, and label of “0” indicates a
less relevant result. Hence, the leaves of the tree with high
probability of the “1” label are the regions of the behavior space
most likely to contain “best bets”.

The splits in the decision tree, as translated into rules, are often
intuitive in retrospect, but would have been difficult to design in
advance. For example, the sample rule in Figure 6.1 states that a
“best bet” result is likely with probability of 0.76 if there is large
overlap of query words and with the domain of the result, there is
a large number of clicks on the result, and the users take less than
37 seconds on average to click on the result.

Figure 6.1: Example rule (leaf) of decision tree for selecting a
top result based on past user behavior patterns.

6.2 Practical Impact
While the recall of returning an excellent “best bet” result for less
than 30% of unique queries may seem small, in terms of user
experience the effect is more significant. The queries for which
there is sufficient amount of user interaction to make a good bet
are also more frequent – in other words, in terms of query
volume, these queries cover far more than 30%. Hence, a
significant improvement of the top 1 result of the magnitude
described noticeably improves the actual web search user
experience.
Furthermore, the overlap of the “best bets” generated via
classification with the general ranking methods is small. Hence,
the improvement seen in isolation is expected to persist in the
“live” setting where a classifier-based system might back-off to
the ranking method if there is no top result to propose with high
confidence based on past user behavior.

Using a general classification method also has important benefits.
As users behavior evolves, and as click fraud and spam operators
become more sophisticated, it would be difficult to maintain and
update the rules and the code in the domain-specific algorithms.
In contrast, our classification approach is easily amenable to
updates (i.e., can be retrained over time and with new user
behavior data over existing relevance judgments). Hence, the
impact of our approach goes beyond the specific relevant
improvements (which are substantial). In summary, we presented
and empirically validated a flexible and effective approach to
mining past user behavior data to suggest “best bet” results for
appropriate queries.

7. RELATED WORK
Ranking search results is a fundamental problem in information
retrieval and web search. Most common approaches primarily
focus on similarity of query and a page, as well as the overall
page quality [3, 20]. However, with increasing popularity of
search engines, implicit feedback (i.e., the actions users take when
interacting with the search engine) can be used to improve the
rankings. Implicit relevance measures have been studied by
several research groups. An overview of implicit measures is
compiled in Kelly and Teevan [13]. This research, while
developing valuable insights into implicit relevance measures,
was not applied to improve the ranking of web search results in
realistic settings.
Closely related to our work, Joachims [11] collected implicit
measures in place of explicit measures, introducing a technique
based entirely on clickthrough data to learn ranking functions.
Fox et al. [9] explored the relationship between implicit and
explicit measures in Web search, and developed Bayesian models
to correlate implicit measures and explicit relevance judgments
for both individual queries and search sessions. This work
considered a wide range of user behaviors (e.g., dwell time, scroll
time, reformulation patterns) in addition to the popular
clickthrough behavior. However, the modeling effort was aimed
at predicting explicit relevance judgments from implicit user
actions and not specifically at classifying “best bets” via user
behavior. Other studies of user behavior in web search include
Lee et al. [14] and Rose et al. [19], but were not directly applied
to improve ranking.
More recently, Joachims et al. [12] presented an empirical
evaluation of interpreting clickthrough evidence. By performing
eye tracking studies and correlating predictions of their strategies
with explicit ratings, the authors showed that it is possible to
accurately interpret clickthroughs in a controlled, laboratory
setting. Unfortunately, the extent to which previous research
applies to real-world web search is unclear. At the same time,
while recent work (e.g., [21, 22, 24]) on using clickthrough
information for improving web search ranking is promising, it
captures only one aspect of the user interactions with web search
engines, and has not investigated the effectiveness of these
methods for ranking in the production settings. We build on
existing research to develop robust user behavior interpretation
techniques for the real web search setting. Instead of treating each
user as a reliable “expert”, we aggregate information from
multiple, unreliable, user search session traces. To the best of our
knowledge, ours is the first work in the literature on effectively
identifying “best bet” results in tandem with identifying the
appropriate queries using past user behavior patterns.

8. CONCLUSIONS
The accuracy of the top result in web search is an important and
challenging problem. We have empirically showed the
effectiveness of exploiting the “wisdom of crowds” as features in
our general learning framework, to select the most promising top
result for a large and important class of web search queries.
Our large scale experiments on real user behavior data and
queries demonstrate a significant improvement in accuracy due to
using general user behavior models, with dramatic accuracy
improvements when explicitly focusing on the “best bet” result
identification problem. Specifically, we showed that the best bet
problem in information retrieval can be more effectively solved
using classification rather than the standard ranking approach.
Furthermore, we demonstrated the value of a general data mining
and machine learning approach that achieves accuracy
comparable to a domain-specific heavily engineered solution. Our
general BehaviorClassifier method achieves significantly higher
recall than the manually engineered solution (i.e., coverage of
queries for which best bet results can be accurately proposed). As
we discussed, the classification framework we developed is more
amenable to easy maintenance and updating than an engineered
approach, allowing our system to be easily tuned with evolving
user behavior patterns and query distributions.
An important side effect of our approach is a general way of
classifying user behavior as a first step towards better
understanding user intent. So far, by construction, our focus was
on navigational queries – i.e., queries for which a clear and
obvious “best bet” results exist. However, many common queries
are not navigational [5], and there may be multiple results for a
user to examine to get all the necessary information. Our behavior
classification method allows us to automatically detect these
different types of behavior (e.g., Navigational vs. other) and
hence can help identify the user intent even if there is no “best
bet” result that can be returned. A promising direction is how to
extend and apply these models to other types of queries, and how
to improve user behavior modeling techniques to further improve
the web search experience.

ACKNOWLEDGMENTS
We thank Eric Brill, Susan Dumais, Robert Ragno, Rohit Wad,
and Ramez Naam for insightful comments and suggestions. We
also thank Chris Burges and Matt Richardson for providing an
implementation of RankNet for our experiments.

REFERENCES
[1] E. Agichtein, E. Brill, S. Dumais, and R. Ragno, Learning

User Interaction Models for Predicting Web Search Result
Preferences, in the Proceedings of SIGIR, 2006

[2] E. Agichtein, E. Brill, and S. T. Dumais, Improving Web
Search Ranking by Incorporating User Behavior
Information, in the Proceedings of SIGIR, 2006

[3] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information
Retrieval, Addison-Wesley, 1999.

[4] S. Brin and L. Page, The Anatomy of a Large-scale
Hypertextual Web Search Engine, in the Proceedings of
WWW, 1997

[5] A. Broder, A taxonomy of web search, SIGIR Forum, 2002
[6] C. J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,

N. Hamilton, G. Hullender, Learning to Rank using Gradient
Descent, in the Proceedings of ICML, 2005

[7] D.M. Chickering, The WinMine Toolkit, Microsoft
Technical Report MSR-TR-2002-103, 2002

[8] M. Claypool, D. Brown, P. Lee and M. Waseda. Inferring
user interest. IEEE Internet Computing, 2001

[9] S. Fox, K. Karnawat, M. Mydland, S. T. Dumais and T.
White. Evaluating implicit measures to improve the search
experience. ACM TOIS, 2005

[10] J. Goecks and J. Shavlick. Learning users’ interests by
unobtrusively observing their normal behavior. In the
Proceedings of the IJCAI Workshop on Machine Learning
for Information Filtering. 1999.

[11] T. Joachims, Optimizing Search Engines Using Clickthrough
Data, in the Proceedings of SIGKDD, 2002

[12] T. Joachims, L. Granka, B. Pang, H. Hembrooke, and G.
Gay, Accurately Interpreting Clickthrough Data as Implicit
Feedback, in the Proceedings of SIGIR, 2005

[13] Kelly, D. and Teevan, J., Implicit feedback for inferring user
preference: A bibliography. In SIGIR Forum, 2003

[14] U. Lee, Z. Liu, J. Cho, Automatic Identification of User
Goals in Web Search, In Proceedings WWW, 2005

[15] M. Morita, and Y. Shinoda, Information filtering based on
user behavior analysis and best match text retrieval. In
Proceedings of SIGIR, 1994

[16] D. Oard and J. Kim. Implicit feedback for recommender
systems. In the Proceedings of the AAAI Workshop on
Recommender Systems. 1998

[17] D. Oard and J. Kim. Modeling information content using
observable behavior. In Proceedings of the 64th Annual
Meeting of the American Society for Information Science
and Technology. 2001

[18] F. Radlinski and T. Joachims, Query Chains: Learning to
Rank from Implicit Feedback, Proceedings of the ACM
Conference on Knowledge Discovery and Data Mining
(KDD), ACM, 2005.

[19] D. E. Rose and D. Levinson, Understanding user goals in
web search, In Proceedings of WWW 2004

[20] G. Salton & M. McGill. Introduction to modern information
retrieval. McGraw-Hill, 1983

[21] X. Shen, C. Zhai, Active Feedback in Ad Hoc Information
Retrieval, in Proceedings of SIGIR, 2005

[22] X. Shen, B. Tan, C. Zhai, Context-Sensitive Information
Retrieval with Implicit Feedback, in Proceedings of SIGIR,
2005

[23] E.M. Voorhees, D. Harman, Overview of TREC, 2001
[24] G.R. Xue, H.J. Zeng, Z. Chen, Y. Yu, W.Y. Ma, W.S. Xi,

and W.G. Fan, Optimizing web search using web click-
through data, in Proceedings of CIKM, 2004

