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ABSTRACT
The computation of page importance in a huge dynamic graph has
recently attracted a lot of attention because of the web. Page impor-
tance, or page rank is defined as the fixpoint of a matrix equation.
Previous algorithms compute it off-line and require the use of a lot
of extra CPU as well as disk resources (e.g. to store, maintain and
read the link matrix). We introduce a new algorithm OPIC that
works on-line, and uses much less resources. In particular, it does
not require storing the link matrix. It is on-line in that it continu-
ously refines its estimate of page importance while the web/graph
is visited. Thus it can be used to focus crawling to the most interest-
ing pages. We prove the correctness of OPIC. We present Adaptive
OPIC that also works on-line but adapts dynamically to changes of
the web. A variant of this algorithm is now used by Xyleme.

We report on experiments with synthetic data. In particular, we
study the convergence and adaptiveness of the algorithms for var-
ious scheduling strategies for the pages to visit. We also report on
experiments based on crawls of significant portions of the web.

Categories and Subject Descriptors
E.1 [Date Structures] Graphs and networks
F.2.1 [Numerical Algorithms and Problems] Computations on ma-
trices
H.2.8 [Database Applications] Data mining

General Terms
Algorithms, Experimentation

Keywords
Page importance, Hyperlink, Web graph

Introduction
An automated web agent visits the web, retrieving pages to perform
some processing such as indexing, archiving, site checking, etc., [3,
15, 24]. The robot uses page links in the retrieved pages to discover
new pages. All the pages on the web do not have the same impor-
tance. For example, Le Louvre homepage is more important that an
unknown person’s homepage. Page importance information is very
valuable. It is used by search engines to display results in the order
of page importance [15]. It is also useful for guiding the refreshing
and discovery of pages: important pages should be refreshed more
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often1 and when crawling for new pages, important pages have to
be fetched first [9]. Following some ideas of [18], Page and Brin
proposed a notion of page importance based on the link structure
of the web [5]. This was then used by Google with a remarkable
success. Intuitively, a page is important if there are many impor-
tant pages pointing to it. This leads to a fixpoint computation by
repeatedly multiplying the matrix of links between pages with the
vector of the current estimate of page importance until the estimate
is stable, i.e., until a fixpoint is reached.

The main issue in this context is the size of the web, billions of
pages [4, 23]. Techniques have been developed to compute page
importance efficiently, e.g., [16]. The web is crawled and the link
matrix computed and stored. A version of the matrix is then frozen
and one separate process computes off-line page importance, which
may take hours or days for a very large graph. So, the core of the
technology for the off-line algorithms is fast sparse matrix multi-
plication (in particular by extensive use of parallelism). This is a
classical area, e.g., [25]. The algorithm we propose computes the
importance of pages on-line, with limited resources, while crawl-
ing the web. It can be used to focus crawling to the most interest-
ing pages. Moreover, it is fully integrated in the crawling process,
which is important since acquiring web pages is the most costly
part of the system.

Intuitively speaking, some “cash” is initially distributed to each
page and each page when it is crawled distributes its current cash
equally to all pages it points to. This fact is recorded in the history
of the page. The importance of a page is then obtained from the
“credit history” of the page. The intuition is that the flow of cash
through a page is proportional to its importance. It is essential to
note that the importance we compute does not assume anything
about the selection of pages to visit. If a page “waits” for a while
before being visited, it accumulates cash and has more to distribute
at the next visit. In Sections 1 and 2, we present a formal model
and we prove the correctness of the algorithm.

In practice, the situation is more complex. First, the ranking
of result pages by a search engine should be based on factors other
than page importance. One may use criteria such as the occurrences
of the words from the query and their positions. These are typically
criteria from information retrieval [26] that have been used exten-
sively since the first generation of search engines, e.g. [3]. One
may also want to bias the ranking of answers based on the interest
of users [21, 7]. Such interesting aspects are ignored here. On the
other hand, we focus on another critical aspect of page importance,
the variations of importance when the web changes.

The web changes all the time. With the off-line algorithm, we
need to restart a computation. Although techniques can be used to

1Google [15] seems to use such a strategy for refreshing pages;
Xyleme [28] does.
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take into account previous computations, several costly iterations
over the entire graph have to be performed by the off-line algo-
rithm. We show how to modify the on-line algorithm to adapt to
changes. Intuitively, this is achieved by taking into account only a
recent window of the history.

Several variants of the adaptive on-line algorithm are presented.
A distributed implementation of one of them is actually used by the
Xyleme crawlers [27, 28]. The algorithms are described using web
terminology. However, the technique is applicable in a larger set-
ting to any graph. Furthermore, we believe that distributed versions
of the on-line algorithm could be useful in network applications
when a link matrix is distributed between various sites.

We also mention studies that we conducted with librarians from
the French national Library to decide if page importance can be
used to detect web sites that should be archived. More precisely, we
discuss some experiments and we detail how to use our system to
support new criteria of importance, such as site-based importance.

An extended abstract of this work was published in [2]. A short
and informal presentation of the algorithm is given there. The for-
mal presentation, the details of the results as well as the discussion
of the experiments are new.

The paper is organized as follows. We first present the model
and in particular, recall the definition of importance. In Section 2,
we introduce the algorithm focusing on static graphs. In Section 3,
we consider different crawling strategies and we move to dynamic
graphs, i.e., graphs that are continuously updated like the web. The
following section deals with implementation and discusses some
experiments. The last section is a conclusion.

1. MODEL
In this section, we present the formal model. Reading this sec-

tion is not mandatory for the comprehension of the rest of the paper.

The web as a graph. We view the World Wide Web as a directed
graph G. The web pages are the vertices. A link from one page to
another form a directed edge.

We say that a directed graph G is connected if, when directed
edges are transformed into non-directed edges, the resulting graph
is connected in the usual sense. A directed graph G is said to be
strongly connected if for all pair of vertices i� j there exists a di-
rected path going from i to j following the directed edges of G. A
graph is said to be aperiodic if there exists a k such that for all pair
of vertices i� j there exists a directed path of length exactly k going
from i to j following the directed edges of G. Thus aperiodicity
implies strong connectedness.

When the web graph is not connected, each connected compo-
nents may be considered separately.

A graph as a matrix. Let G be any directed graph with n ver-
tices. Fix an arbitrary ordering between the vertices. G can be
represented as a matrix L����n� ���n� such that:

� L is nonnegative, i.e. �i� �j� L�i� j� � �

� L�i� j� � � if and only if there is an edge from vertex i to
vertex j.

There are several natural ways to encode a graph as a matrix,
depending on what property is needed afterwards. For instance,
Google [5, 21] defines the out-degree d�i� of a page as the number
of outgoing links, and set L�i� j� � ��d�i� if there is a link from i
to j. In [18], Kleinberg proposes to set K�i� j� � � if there is a link
from i to j, but then sets L � KT �K (where KT is the transpose
of matrix K).

Importance. The basic idea is to define the importance of a page
in an inductive way and then compute it using a fixpoint. If the
graph contains n nodes, the importance is represented as a vector
�x in a n dimensional space. We consider three examples, in which
the importance is defined inductively by the equation �xk�� � L�xk:

� If one decides that a page is important if it is pointed by im-
portant pages. Then set L�i� j� � � iff there is an edge be-
tween i and j.

� A “random walk” means that we browse the web by follow-
ing one link at a time, and all outgoing links of a page have
equal probability to be chosen. If one decides that a page im-
portance is the probability to read it during a “random walk”
on the web, then set L�i� j� � ��d�i� iff there is a edge be-
tween i and j. The random walk probabilities correspond to
the Markov chain with generator L. This definition of L will
result in the definition of importance as in Google Pagerank.

� If one decides that a page is important if it is pointed by
important pages or points to important pages. Then set
L�i� j� � � iff there is an edge between i and j or an edge
between j and i. This is related to the work of Kleinberg.

In all cases, this leads to solving by induction an equation of the
type �xk�� � L�xk where L is a nonnegative matrix. This may be
achieved by iterating over xk. Unfortunately, for obvious modulus
reasons, this is very likely to diverge or to converge to zero. Ob-
serve that we are only interested in the relative importance of pages,
not their absolute importance. This means that only the direction of
xk is relevant, not its norm. Thus it is more reasonable to consider
the following induction (equivalent for importance computation),
which uses the previous induction step but renormalizes after each
step:

�xk�� �
L�xk

k L�xk k
�y�

Computing the importance of the pages thus corresponds to find-
ing a fixpoint �x to �y�, each ith coordinate of x being the impor-
tance of page i. By definition, such a fixpoint is an eigenvector of
L with a real positive eigenvalue. If �x� is a linear combination of
all eigenvector having a real positive eigenvalue then it is easy to
see that �y� will converge to the eigenspace corresponding to the
dominant eigenvalue (i.e. which is maximal). Thus, unless x� is
not general enough (e.g. not zero), the importance corresponds to
an eigenvector of L which eigenvalue is a positive real and which
modulus is maximal among all other eigenvalue.

For each nonnegative matrix L, there always exists such an
eigenvector (see Perron-Frobenius Theorem 1.1) but several
problems may occur:

� There might be several solutions. This happens when the
vector space corresponding to the maximal eigenvalue has a
dimension greater than 1.

� Even if there is a unique solution, the iteration �y� may not
converge when the graph does not have some desired prop-
erties.

All these cases are completely characterized in the Theorem of
Perron-Frobenius that we give next.

THEOREM 1.1. Perron-Frobenius [14] Let L be an nonnega-
tive matrix corresponding to a graph G.
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� There exists an eigenvalue r which is real positive and which
is greater than the modulus of any other eigenvalue.

� If G is strongly connected then the vector space for r is of
dimension 1.

� If G is aperiodic and �x� general enough then the induction
�y� converges towards the eigenvector for r of modulus 12.

In order to solve the convergence problem, Google [15] uses the
following patch. Recall that L is defined in this case by L�i� j� �
��d�i� iff there is an edge from i to j. A new matrix L� is defined
such that L��i� j� � L�i� j� � � where � is a small real. Then the
fixpoint is computed overL� instead ofL. Note thatL� corresponds
to a new graph G� which is G plus a “small” edge for any pair i� j.
Observe that the new graph G� is strongly connected and aperiodic
thus the convergence of �y� is guaranteed by Theorem 1.1. For
each �, this gives an importance vector �x�. It is not hard to prove
that when epsilon goes to zero, �x� converges to an eigenvector of L
with a maximal real positive value. Thus, for epsilon small enough,
�x� may be seen as a good approximation of the importance. For
some mysterious reason, Google sets3 � to ��	.

Another way to cope with the problem of convergence is to con-
sider the following convergence suite:

�y�� �yn�� �
Lyn � yn

k Lyn � yn k

If r is the maximal eigenvalue of a nonnegative matrix L then
r � � can be shown to be the maximal eigenvalue of L� I . Thus,
a solution �y of �y�� is also a solution of y. If L is strongly con-
nected then L� I is aperiodic and thus �y�� converges towards the
importance. If L is not strongly connected there might be several
linearly independent eigenvector, but still it is easy to show that
�y�� converges towards the projection of �x� on the eigenspace cor-
responding to all solutions.

On the Web. The computation of page importance in a huge dy-
namic graph has recently attracted a lot of attention because of the
web, e.g., [20, 5, 21, 7, 12]. It is a major issue in practice that
the web is not strongly connected. For instance, in the bow tie [6]
vision of the web, the in nodes do not branch back to the core of
the web. Although the same computation makes sense, it would
yield a notion of importance without the desired semantics. Intu-
itively, the random walk will take us out of the core and would
be “trapped” in pages that do not lead back to the core (the “rank
sink” according to [5]). So, pages in the core (e.g., the White House
homepage) would have a null importance. Hence, enforcing strong
connectivity of the graph (by “patches”) is more important from a
semantic point of view than for mathematical reasons. In a similar
way to Google, we enforce the strong connectivity of the graph by
introducing “small” edges. More precisely, in our graph, each node
points to a unique virtual page. Conversely, this virtual page points
to all other nodes.

Our Algorithm. Our algorithm computes the characteristic vec-
tor of �y��, and doesn’t require any assumption on the graph. In
particular, it works for any link matrix L assuming that L can be
read line by line. More precisely, for each page i that is read, we
use the values L�i� j� where L�i� j� � �. For instance, in Google’s
2Note that the converse is true in the sense that if the graph is not
aperiodic it is always possible to find an x� such that �y� does not
converge.
3Greater values of � increase the convergence speed.

link matrix, these values correspond to outgoing links (the pages j
pointed by page i), which are known at little cost by parsing the
HTML file. However, the cost may be higher in some other cases
(e.g., when L�i� j� � � represents incoming links, we need to store
and read an index of links). In terms of convergences, the different
cases are characterized in a similar way as previously, e.g. if G is
strongly connected, the solution is unique and independent of the
initial vector x�.

Previous work is abundant in the area of Markov chains and ma-
trix fixpoint computations, e.g. [10] or [20]. In most cases, infinite
transition matrix are managed by increasing the size of a known
matrix block. Some works also consider a changing Web graph,
e.g. an incremental computation of approximations of page impor-
tance is proposed in [8].

As far as we know, our algorithm is new. In particular:

� it may start even when a (large) part of the matrix is still
unknown,

� it helps deciding which (new) part of the matrix should be
acquired (or updated),

� it is integrated in the crawling process,

� it works on-line even while the graph is being updated.

For instance, after crawling 
�� million pages on the web, we have
a relatively precise approximation of page importance for over �
billion pages, i.e., even of parts of the matrix that we do not know
yet. A drawback for our algorithm is that it is strictly tailored to the
computational cost model of crawling the Web, and in other cases
converges slower than others after reading the same pages.

2. STATIC GRAPHS: OPIC
We consider in this section the case of a static graph (no up-

date). We describe the algorithm for Google’s link matrix L as
defined previously. It can be generalized to work for other link ma-
trices. We present the OPIC algorithm and show its correctness.
We briefly discuss the advantages of the technique over the off-line
algorithm. We will consider dynamic graphs in the next section.

Informal description
For each page (each node in the graph), we keep two values. We
call the first cash. Initially, we distribute some cash to each node,
e.g., if there are n nodes, we distribute ��n to each node. While
the algorithm runs, the cash of a node records the recent informa-
tion discovered about the page, more precisely, the sum of the cash
obtained by the page since the last time it was crawled. We also
record the (credit) history of the page, the sum of the cash obtained
by the page since the start of the algorithm until the last time it was
crawled. The cash is typically stored in main memory whereas the
history may be stored on disk. When a page i is retrieved by the
web agent, we know the pages it points to. In other words, we have
at no cost the outgoing links information for the retrieved page. We
record its cash in the history, i.e., we add it to the history. We also
distribute this cash equally between all pages it points to. We re-
set the cash of the page i to 0. This happens each time we read a
page. We will see that this provides enough information to com-
pute the importance of the page as used in standard methods. We
will consider in a further section how this may be adapted to handle
dynamic graphs.

Detailed description
We use two vectors C����n� (the cash) and H����n� (the history).
The initialization of C has no impact on the result. The history of

282



a page is simply a number. A more detailed history will be needed
when we move to an adaptive version of the algorithm. Let us
assume that the history H is stored on disk and C is kept in main
memory. In order to optimize the computation of jHj �

P
iH�i�,

a variable G is introduced so that G � jHj at each step. The
algorithm is as follows:

OPIC:
On-line Page Importance Computation

for each i let C[i] := 1/n ;
for each i let H[i] := 0 ;
let G:=0 ;
do forever
begin

choose some node i ;
%% each node is selected
%% infinitely often

H[i] += C[i];
%% single disk access per page

for each child j of i,
do C[j] += C[i]/out[i];

%% Distribution of cash
%% depends on L

G += C[i];
C[i] := 0 ;

end

At each step, an estimate of any page k’s importance is �H�k� �
C�k����G � ��.

Note that the algorithm does not impose any requirement on
the order we visit the nodes of the graph as long as each node is
visited infinitely often (some minimal fairness). This is essential
since crawling policies are often governed by considerations such
as robots exclusion, politeness (avoid rapid-firing), page change
rate, focused crawling.

As long as the cash of children is stored in main memory, no
disk access is necessary to update it. At the time we visit a node
(we crawl it), the list of its children is available on the document
itself and does not require disk access.

Each page has at least one child, thanks to the “small” edges that
we presented in the previous section (and that points to the virtual
page). However, for practical reasons, the cash of the virtual page
is not distributed all at once. This issue is in particular related to the
discovery of new pages and management of variable sized graphs
that we consider later.

DEFINITION 2.1. We note Ct and Ht the values of vectors C
and H at the end of the t-th step of the algorithm. The vector C�

denotes the value of vector C at initialization (all entries are ��n).
Let Xt be defined by:

Xt �
Ht

jHtj

i.e.,

�j� Xt�j� �
Ht�j�

�
P

iHt�i��

One can prove that:

THEOREM 2.1. Assuming the graph is connected, when t goes
to infinity, jHtj goes to infinity and

���L� �Xt��Xt

�� � �

jHtj

and jXtj � �. Thus the vector Xt converges to the vector of im-
portance, i.e.,

XImportance � limt���Xt

To prove this theorem, we use the three following lemmas:

LEMMA 2.2. The total amount of all cash is constant and equal
to the initial value, i.e., for each t,

Pn
i�� Ct�i� �

Pn
i�� C��i� � �

This is obvious by induction since we only distribute each node
cash among the children.

LEMMA 2.3. After each step t, we have for each page j,

Ht�j� � Ct�j� � C��j� �
X

�i ancestor of j�

�
L�i� j�

out�i�
�Ht�i��

The proof by induction is given in the appendix. It works by
considering two cases: either j is read, or another page is read.

LEMMA 2.4. If all pages are infinitely read,
P

j Ht�j� goes to
infinity.

For this, we must prove that there is e � � such that starting
at any time t,

P
j Ht�j� will eventually increase of e. Consider

e � ��n, i.e. e is the average value of cash on all pages. At time t,
there is a page j having more than e cash. The cash of page j can
not decrease until j is read. This page will be read one more time
after t because all pages are read infinitely often. Thus, the history
of the page will increase of at least e when page j is read, and this
will increase

P
j Ht�j�.

Now, we can prove, as shown in the appendix, that:

LEMMA 2.5. limt��� jL� �Xt �Xtj � �

By Lemma 2.5, Xt go infinitely close to a characteristic vector
of L of the dominant characteristic value r.

This suggests using Xt � Ht�G as an estimate of page impor-
tance. We can add � (i.e.

P
i Ct�i�) to the denominator G by using

the cash accumulated since last crawl, and thus have (on average) a
marginally better estimate.

More precisely, one can use for page j,

Ht�j� � Ct�j�

�
P

iHt�i�� � �

Advantages over the off-line algorithms. The main advantage
of our algorithm is that it allows focused crawling. Because our
algorithm is run online and its results are immediately available
to the crawler, we use it to focus crawling to the most interesting
pages for the users. This is in particular interesting in the context
of building a web archive [1], when there are strong requirements
(and constraints) on the crawling process.

Moreover, since we don’t have to store the matrix but only a
vector, our algorithm presents the following advantages:

1. It requires less storage resources than standard algorithms.

2. It requires less CPU, memory and disk access than standard
algorithms.

283



3. It is easy to implement.

Our algorithm is also well adapted to “continuous” crawl strate-
gies. The reason is that storing and maintaining the link matrix
during a “continuous” crawl of the Web (when pages are refreshed
often) is significantly more expensive than for single “snapshot”
crawl of the Web (when each page is read only once). Indeed, when
information about specific pages has to be read and updated fre-
quently, the number of random disk access may become a limiting
factor. In our experiment for instance, the crawler was retrieving
hundreds of pages per seconds on each PC (see Section 4). How-
ever, note that the storage of a link matrix may be useful beyond
the computation of page importance. For instance, given a page p,
Google provides the list of pages pointing to it. This means that
the matrix (or its transpose) is maintained in some form. Another
usage of the link matrix is exhibited in [13].

3. CRAWLING STRATEGIES
In this section, we first consider different crawling strategies that

impact the convergence of our algorithm. Then, we study how they
can be used in the case of a changing graph. Implementations as-
pects and experiments are considered in the next section.

3.1 On convergence
As previously mentioned, the error in our estimate is bounded by
�

jHtj
. Let us call

�

Gt
�

�

jHtj
� ��

X

k

Ht�k�

the error factor, although this is, strictly speaking, not the error
(but an upper bound for it). Now, in principle, one could choose a
very bad strategy that would very often select pages with very low
cash. (The correctness of the algorithm requires that each page is
read infinitely many times but does not require the page selection
strategy to be smart.) On the other hand, if we choose nodes with
very large cash, the error factor decreases faster.

To illustrate, consider three page selection strategies:

1. Random : We choose the next page to crawl randomly with
equal probability. (Fairness: for each t�, the probability that
a page will be read at some t � t� goes to 1 when t goes to
infinity.)

2. Greedy : We read next the page with highest cash. This is a
greedy way to decrease the value of the error factor. (Fair-
ness: For a strongly connected graph, each page is read in-
finitely often because it accumulates cash until it is eventu-
ally read. See Lemma 6.2 in the appendix).

3. Cycle : We choose some fixed order and use it to cycle
around the set of pages. (Fairness is obvious.) We consid-
ered this page selection strategy simply to have a comparison
with a systematic strategy. Recall that systematic page selec-
tion strategies impose undesired constraints on the crawling
of pages.

REMARK 3.1. (Xyleme) The strategy for selecting the next
page to read used in Xyleme is close to Greedy. It is tailored to
optimize our knowledge of the web [22], the interest of clients for
some portions of the web, and the refreshing of the most important
pages that change often.

To get a feeling of how Random and Greedy progress, let us con-
sider some estimates of the values of the error factor for these two

page selection strategies. Suppose that at initialization, the total
value of the cash of all pages is � and that there are n pages. Then:

� Random : The next page to crawl is chosen randomly so its
cash is on average �

n
. Thus, the denominator of the error

factor is increased by �
n

on average per page.

� Greedy : A page accumulates cash until it reaches the point
where it is read. Let � be the average cash of a page at the
time it is read. On average, the cash of the page is ��	 if
we suppose that cash is accumulated linearly by pages until
they are read. This result has been confirmed by experiments.
Since the total of the cash is �, this shows that � is 	� ���n�.
Thus the denominator of the error factor is increased by �

n
on

average per page read. This result has also been confirmed
by experiments, the average “cash” value of crawled pages
converges to �

n
after crawling a few thousand pages.

Thus the error factor decreases on average twice faster with
Greedy than with Random. We will see with experiments (in Sec-
tion 4) that, indeed, Greedy converges faster. Moreover, Greedy
focuses our resources on the important pages which corresponds
to users interest. On these pages, the error factor of greedy Greedy
decreases even faster.

3.2 A changing graph
Consider now a dynamic graph (the case of the web). Pages

come and disappear and edges too. Because of the time it takes to
crawl the Web (weeks or months), our knowledge of the graph is
not perfect. Page importance is now a moving target and we only
hope to stay close to it.

It is convenient to think of the variable G � jHj as the clock.
Consider two time instants t � T� t corresponding to G having the
value t � T and t. Let Ht�T�t�i� be the total of cash added to the
history of page i between time t� T and t, i.e., Ht�i� �Ht�T �i�.
Let

�j� Xt�T �j� �
Ht�T�t�j�

�
P

iHt�T�t�i��
�

Ht�T�t�j�

T

Because the statement of Theorem 2.3 does not impose any condi-
tion on the initial state of Xt, it is obvious that Xt�T converges to
the vector of importance when T goes to infinity. (Note that on the
other hand, for a fixed T , when t goes to infinity, Xt�T does not
converge to the vector of importance.) Using the data gathered be-
tween t� T and t, comes to ignoring the history before time t�T
and starting with the state of the cash at time t� T for initial state.
Observe that this state may be not more informative than the very
first state with equal distribution of cash.

We thus estimate the importance of a page by looking at the his-
tory between t (now) and t� T . We call the interval �t� T� t� the
(time) window. There is a trade-off between precision and adapt-
ability to changes and a critical parameter of the technique is the
choice of the size of the window.

3.3 The Adaptive OPIC algorithm
We next describe (variants of) an algorithm, namely Adaptive

OPIC, that compute(s) page importance based on a time window.
In Adaptive OPIC, we have to keep some information about the

history in a particular time window. We considered the following
window policies:

� Fixed Window (of size T ): For every page i, we store the
value of cash Ct�i� and the global value Gt for all times it
was crawled since (now - T ).
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Figure 1: Simple Interpolation

� Variable Window (of size k): For every page i, we store the
value of cash Ct�i� and the global value Gt for the last k
times this page was crawled.

� Interpolation (of time T ): For every page i, we store only
the Gt value when it was last crawled, and an interpolated
history H�i� (to be defined) that estimates the cash it got in a
time interval of size T before that last crawl.

In the following, we call measure a pair (C�G). Note that in
Variable Window, we store exactly k measures; and that in Inter-
polation, we store only one. Note also that in Fixed Window, the
number of measures varies from one page to another.

In our analysis of Adaptive OPIC, there will be two main dimen-
sions: (i) the page selection strategy that is used (e.g., Greedy or
Random ) and (ii) the window policy that is considered (e.g., Fixed
Window or Interpolation).

Variable Window is the easiest to implement since we have to
maintain, for each page, a fixed number of values.

Fixed Window. One must be aware that some pages will be read
rarely (e.g., once in several months), whereas others will be read
perhaps daily. So there are huge variations in the size of histo-
ries. For very large histories, it is interesting to use compression
techniques, e.g., to group several consecutive measures into one.
On the opposite, we have too few measures for very unimportant
pages. This has a negative impact on the speed of convergence of
the algorithm. By setting a minimum number of measures per page
(say 3), experiments show that we obtain better results. See Sec-
tion 4.

Interpolation. It is tailored to use little resources. Indeed, for each
page, the history simply consists of two values. This is what we
tested on real web data (See Section 4). It is the policy actually used
in Xyleme [27, 22, 28]. It is based on a fixed time window of size
T . The algorithm uses for history two vectors H����n�� G����n�:

� H�i� represents the sum of the cash acquired by the page i
during a time period T before the last crawl. This value is
obtained by interpolation.

� G�i� is the G-time of that last crawl.

When we visit a page and update its history, we estimate the cash
that was added to that page in the interval T until that visit. See

Figure 1 for an intuition of the interpolation. We know what was
added to its cash between time G�i� and G, C�i�. The interpolation
assumes that the page accumulates cash linearly. This has been
confirmed by experiments. More precisely, the history is updated
as follows:

H�i� � T��G�G�i��
T

� C�i� if G�G�i� � T
C�i� � T

G�G�i�
otherwise

Expanding the graph. When the number of nodes increases, the
relative difficulty to assign a cash and a history to new nodes high-
lights some almost philosophical issues about the importance of
pages. Consider the definition of importance based on �y�. When
we crawl new pages, these pages acquire some importance. The
importance of previously known pages mechanically decreases in
average simply because we crawled more pages. This is true for
instance in the random walk model: adding new pages of non-null
probability to be read can only decrease the probability of other
pages to be read. However, these changes in pages importance
seem unfair and are not expected by users of the system. We assign
to each new page a default history that corresponds to the impor-
tance of recently introduced pages. Experiments confirmed this to
be a good estimate. The reason is that important pages are discov-
ered first, whereas new or recently introduced pages are often the
least important ones.

Focused crawling and pages discovery. In our system, the sched-
uling of pages to be read depends mostly on the amount of “cash”
for each page. The crawling speed gives the total number of pages
that we can read for both discovery and refresh. Our page impor-
tance architecture allows us to allocate resources between discov-
ery and refresh. For instance, when we want to do more discovery,
we proceed as follows: (i) we take some cash from the virtual page
and distribute it to pages that were not read yet (ii) we increase the
importance of “small” edges pointing to the virtual page so that it
accumulates more cash. To refresh more pages, we do the opposite.
We can also use a similar method to focus the crawl on a subset of
interesting pages on the web. For instance, we may use this strat-
egy to focus our crawling on XML pages [27, 22]. In some other
applications, we may prefer to quickly detect new pages. For in-
stance, we provide to a press agency a “copy tracker” that helps
detecting copies of their News wires over the web. The problem
with News pages is that they often last only a few days. In the
OPIC algorithm, we process as follows for each link: pages that
are suspected to contain news wires (e.g. because the URL con-
tains “news”) receive some “extra” cash. This cash is taken from
the (unique) virtual page so that the total value of cash in the system
does not change. Other criteria may be used, for instance we are
working on the use of the links semantic, e.g. by analyzing words
found close to the HTML link anchor.

4. IMPLEMENTATION AND EXPERIMENT
We implemented and tested first the standard off-line algorithm

for computing page importance, then variants of Adaptive OPIC.
We briefly describe some aspects of the implementation. We then
report on experiments first on synthetic data, then on a large collec-
tion of web pages.

4.1 A distributed implementation
Our implementation of the off-line algorithm is standard and will

not be discussed here. We implemented a distributed version of
Adaptive OPIC that can be parameterized to choose a page selec-
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tion strategy, a window policy, a window size, etc.
Adaptive OPIC runs on a cluster of Linux PCs. The code is in

C++. Corba is used for communications between the PCs. Each
crawler is in charge of a portion of the pages of the web. The choice
of the next page to read by a crawler is performed by a separate
module (the Page Scheduler). The split of pages between the vari-
ous crawlers is made using a hash function hurl of the URLs. Each
crawler evaluates the importance of pages it is in charge of. Its por-
tion of the cash vector is in main memory, whereas its portion of the
history is on disk. The crawler also uses an (in memory) hash table
that allows to map a URL handled by this crawler to its identifier
(an integer) in the system. Finally, it uses a map from identifiers
to URLs. This last map may reside on disk. Each crawler crawls
millions of pages per day. The bandwidth was clearly the limiting
factor in the experiments. For each page that is crawled, the crawler
receives the identifier of a page from the page scheduler and then
does the following:

Fetch: It obtains the URL of the page, fetches the page from the
web and parses it;

Money transfers: It distributes the current cash of the page to
the pages it points to. For each such page, it uses hurl to
obtain the name of the server in charge of that page. It sends
a “money transfer” to that server indicating the URL of the
page and the amount. This is a buffered network call.

Records: It updates the history of the page and resets its cash to
null. Updating the history requires one disk access.

Each crawler also processes the money transfer orders coming from
other servers. Communications are asynchronous.

It should be observed that for each page crawled, there are only
two disk accesses, one to obtain the metadata of the page and one to
update the metadata, including the history. Besides that, there are
Corba communications (on the local network), and main memory
accesses.

4.2 Synthetic data
Although we started our experiments with a large collection

of URLs on the web, synthetic data gave us more flexibility to
study various input and output parameters, such as: graph size,
graph connectivity, change rates, types of changes, distribution of
in-degrees, out-degrees and page importance, importance error,
ranking errors.

The graph model. We performed experiments with various syn-
thetic graphs containing dozens of millions of web pages. These
experiments showed that the use of very large graphs did not sub-
stantially alter the results.

For instance, we started with graphs obtained using a Poisson
distribution on the average of incoming links, a somewhat simplis-
tic assumption. We then performed experiments with more com-
plex distributions following recent studies of the web graph [6],
e.g., with a power distribution P �I � n� � ��n��� . Results were
rather similar to those obtained using a Poisson distribution. In
order to also control the distribution of outgoing links and the cor-
relations between them, we tried several graph models in the spirit
of [11], but even with significant changes of the graph parameters,
the patterns of the results did not change substantially from the sim-
ple graph model. So, we then restricted our attention to rather sim-
ple graphs of reasonably small size to be able to test extensively,
e.g., various page selection strategies, various window sizes, vari-
ous patterns of changes of the web.
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Figure 2: Convergence of OPIC (on all pages)

In the remaining of this section, we will consider a simple graph
model based on the power distribution on incoming edges. Details
omitted. The number of nodes is fixed to N = 100 000 nodes.

Impact of the page selection strategy. First, we studied the con-
vergence of OPIC for various page selection strategies. We consid-
ered Random, Cycle and Greedy. We compared the values of the
estimates at different points in the crawl, after crawling N pages,
up to to �� �N pages.

The error we compute is the mean over the set of pages of the
error between the computation of OPIC at this state and the value
of the fixpoint. More precisely, we compute the average of the
percentage of error:

��� �

P
j

jX�j��Imp�j�j
Imp�j�

N

where Imp is obtained by running the off-line algorithm until a
fixpoint is reached (with negligible error).

Consider Figure 2. The error is about the same for Greedy and
Cycle. This result was expected since previous studies [17] show
that given a standard cost model, uniform refresh strategies perform
as good as focused refresh. As we also expected, Random performs
significantly worse. We also compared these, somewhat artificially,
to the off-line algorithm. In the off-line, each iteration of the matrix
is a computation on N pages, so we count N “crawled pages” for
each iteration.

The off-line algorithm converges almost like Cycle and Greedy.
This is not surprising since the crawl of N pages with Cycle corre-
sponds roughly to a biased iteration on the matrix.

Now consider Figure 3. The error is measured now only for the
top ten percent pages, the interesting ones in practice. For this set of
pages, Greedy (that is tailored to important pages) converges faster
than the others including the off-line algorithm.

We also studied the variance. It is roughly the same for all page
selection strategies, e.g., almost no page had a relative error more
than twice the mean error. We also considered alternative error
measures. For instance, we considered an error weighted with page
importance or the error on the relative importance that has been
briefly mentioned. We also considered the error in ordering pages
when their importance is used to rank query results. All these vari-
ous error measures lead to no significant difference in the results.
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Impact of the size of the window. As already mentioned, a small
window means more reactivity to changes but at the cost of some
lack of precision. A series of experiments was conducted to deter-
mine how much. To analyze the impact of the size of the window,
we use Adaptive OPIC with the Greedy strategy and a Fixed Win-
dow of M crawls, i.e., we keep for each page the history since
the last M crawls of the page. Similar results were obtained with
other variants of the algorithm. Consider Figure 4 ignoring the In-
terpolation policy for the moment. The change rate is the number
of pages that have their in-degree significantly modified (i.e. di-
vided par two or multiplied by two) during the time of crawling N
pages, where N is the number of pages on the graph (i.e. the time
for “one” crawl of the graph). For each change rate the graph is
crawled ten times. The figure shows the result for M = 4, 8, 16.
The important point to notice is that we can get reasonably close
to the fixpoint with rather small windows (e.g., M � � here). As
previously mentioned, the trade-off is reactivity to changes versus
precision. When the time window becomes too small (e.g., M � 

here), the error is more important. This is because each measure
for a page gives only a too rough estimate of this page importance,
so the error is too large. Such an error may still be acceptable for

Window Type and Size Measures
per page

Variable Window 8 measures 8
Fixed Window 8 months 8.4
Improved Fixed Window 4 months 6.1
Interpolation 4 months 1

Figure 5: Storage resources per time window
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some applications.
Now observe the Interpolation experiment in Figure 4. First,

note that it performs almost as well as large Variable Window (e.g.
M � ��) on graph with few changes. Also, it adapts better to
higher change rates (e.g. more than 1 percent). So, let us consider
now the comparison of various window policies.

Impact of the window policy. We compared different policies for
keeping the history. In this report, we use again the Greedy strat-
egy. Various window policies may require different resources. To
be fair, we chose policies that roughly requested similar amount of
resources. Typically, we count for storage the number of measures
we store. (Recall that a measure consists of a value for C and one
for G.) The five policies we compared used between 4 and 8 mea-
sures, except Interpolation that by definition uses only 1. Figure 5
shows the average number of measures used per page in each case.
These measures depend for Fixed Window on the crawling speed
which was set here to be N pages per month (the speed was cho-
sen here so that Fixed Window would use about as much resources
as the others). We also considered a variant of Fixed Window that
forces each page to have a minimum number of measures, namely
Improved Fixed Window. We required for the experiment men-
tioned here a minimum of 3 measures. Note that this resulted for
this particular data set in an increase of the average number of mea-
sures from 
 to ���.

Now consider Figure 6. It shows that for a similar number of
measures, Variable Window performs better than Fixed Window.
The problem with Fixed Window is that very few measures are
stored for unimportant pages and the convergence is very slow be-
cause of errors on such pages. On the other hand, the Improved
Fixed Window policy yields significantly better results. The im-
provement comes from more reliability for unimportant pages.
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The most noticeable result about the use of windows is that the
algorithm with the Interpolation policy outperforms the other vari-
ants while consuming less resources. Indeed, the error introduced
by the interpolation is negligible. Furthermore, the interpolation
seems to avoid some “noise” introduced when an old measure is
added (or removed) in Adaptive OPIC. In some sense, the interpo-
lation acts as a filter on the sequence of measures.

Of course the convergence of all variants of the adaptive algo-
rithms depends on the time window that is used. The excellent be-
havior of Interpolation convinced us to adopt it for our experiments
with crawls of the web. This is considered next.

4.3 Web data
We performed the web experiments using the crawlers of

Xyleme [28]. The crawl used the page selection strategy of
Xyleme that has been previously mentioned and is related to
Greedy. The history was managed using the Interpolation policy.

During the test, the number of PCs varied from 2 to 8. Each PC
had little disk space and less than 1.5Gb of main memory. Some
reasonable estimate of page importance for the most important
pages was obtained in a few days, as important pages are read more
frequently and discovered sooner than others. The experiments
lasted for several months. We discovered one billion URLs; only
400 millions of them were actually read. Note that because of the
way we discover pages, these are 400 million relatively important
pages. Moreover, we could give reasonable importance estimates
even on pages that were never read. This experiment was sufficient
(with limited human checking of the results) to conclude that the
algorithm could be used in a production environment. Typically,
for all practical uses of importance we considered (such as ranking
query results or scheduling page refresh), the precision brought by
the algorithm is rapidly sufficient. An advantage of the algorithm
is also that it rapidly detects the new important pages, so they can
be read sooner.

A main issue was the selection of the size of the time window.
We first fixed it too small which resulted in undesired variations in
the importance of some pages. We then used a too large window
and the reactivity to changes was too limited. Finally, the window
was set to 3 months. This value depends on the crawling speed,
which in our case was limited by the network bandwidth.

Our performance analysis also showed that using our system
(Xyleme crawler and Adaptive OPIC), it is possible to, for in-
stance, crawl and compute page importance (as well as maintain
this knowledge) for a graph of up to 2 billions pages with only 4
PCs equipped each with 4Gb of main memory and a small disk.

In the context of Web Archiving [1], we also conducted experi-
ments to decide if our measures of page importance could be used
to select pages of interest for the French national Library. We se-
lected thousand web sites, and � different professional librarians
ranked each site in order to decide which sites should be archived
(on a 1 to 4 scale). We defined the reference value for each site
based on the average of these rankings. Finally, we defined the
“score” of a librarian as the number of sites in which his rank was
identical to the reference. The scores of librarians ranged from 60
to 80 percent, and the score of our page importance measures was
65 percent. This means that our measure based only on page im-
portance was as good as a professional librarian, although not as
good as the best ones. We are currently working on using other
criteria [1] to improve the “automatic” librarian.

Other Improvements. During our experiments, we found out that
the semantics of links in dynamic pages is (often) not as good as
in pages fully written by authors. Links written by authors usually

points to more relevant pages. On the other hand, most links in
dynamic pages often consist in other (similar) queries to the same
database. For instance, forum archives or catalog pages often con-
tain many links that are used to browse through classification. Simi-
larly, we found out that “internal” links (links that point to a page on
the same web site) are less useful to discover other relevant pages
than “external” links (links to a page on some other web site). To
solve both problems, we are currently working on a notion of site-
based importance [1] that consider links between web-sites instead
of links between web-pages. We are currently experimenting our
algorithm with this new notion of importance per site.

5. CONCLUSION
We proposed a simple algorithm to implement with limited re-

sources a realistic computation of page importance over a graph as
large as the web. We demonstrated both the correctness and us-
ability of the technique. Our algorithm can be used to improve the
efficiency of crawling systems since it allows to focus on-line the
resources to important pages. It can also be biased to take into
account specific fields of interest for the users [1].

More experiments on real data are clearly needed. It would be
in particular interesting to test the variants of Adaptive OPIC with
web data. However, such tests are quite expensive.

To understand more deeply the algorithms, more experiments are
being conducted with synthetic data. We are experimenting with
various variants of Adaptive OPIC. We believe that better impor-
tance estimates can be obtained and are working on that. One is-
sue is the tuning of the algorithms and in particular, the choice of
(adaptable) time windows. We are also continuing our experiments
on changing graphs and in particular on the estimate of the deriva-
tive of the importance. We finally want to analyze more in-depth
the impact of various specific graph patterns as done in [19] for the
off-line algorithm.

We are also working on a precise mathematical analysis of the
convergence speed of the various algorithms. The hope is that this
analysis will provide us with bounds of the error of the importance,
and will also guide us in fixing the size of windows and evaluating
the changes in importance. We are also improving the management
of newly discovered pages.

The algorithm presented here computes page importance that de-
pends on the entire graph by looking at one page at a time indepen-
dently of the order of visiting the pages. It would be interesting to
find other properties of graph nodes that can be computed similarly.
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Appendix: Proof of correctness
LEMMA 6.1. (see lemma 2.3) After each step t, we have for

each page j,

Ht�j� � Ct�j� � C��j� �
X

�i ancestor of j�

�
L�i� j�

out�i�
�Ht�i��

PROOF.

The proof is by induction. Clearly, the lemma is true at time t � �.
Suppose it is true at time t for each element j. Consider element j
at step t � �. At step t � � a page k is crawled. Two cases may
occur:

If j � k, then the right term doesn’t change: �i� i �� j�Ht���i� �
Ht�i�. The left term value doesn’t change either, the cash is added
to H and then set to zero. So Ht���j� �Ct���j� � Ht�j� �Ct�j�,
and the equation is true at t� �.

If j �� k. Then Ct���j� increases by Ct�k� �
L�i�j�

out�i�
. So

Ht���j� � Ct���j� �

C��j� �
X

�i ancestor of j�

�
L�i� j�

out�i�
�Ht�i�� � Ct�k� �

L�k� j�

out�k�

Now �i� i �� k�Ht���i� � Ht�i�, and also Ht���k� � Ht�k� �
Ct�k�, and this shows the result.

LEMMA 6.2. Consider a strongly connected graph. c in the
cash of any node i eventually leads to c�nn in the cash of j. For
each j, Ht�j� goes to infinity.

PROOF.

Each node splits the value by at most n, because it can’t have more
than n different links. We suppose that the graph is strongly con-
nected, so there is a path from i to j, and it is no longer than n. Let’s
note P����Pk the pages for this path. We suppose that every page
is crawled an infinite number of times. So we eventually will crawl
P�, then eventually P�, ... until Pk. Thus we will eventually have
distributed at least c�nn in the cash of j. Consider any moment
t, some node contains at least ��n cash (because

P
i Ct�i� � �).

Thus, it will eventually increase the cash of j (thus eventually its
history) by ��nn. Thus Ht�j� goes to infinity.

LEMMA 6.3. limt��� jL� �Xt �Xtj � �

PROOF.

By definition of Xt, for each i,

Xt�i� � Ht�i��
X

Ht�j�

Then, by Lemma 2.3,

Ht�j� � Ct�j� � C��j� �
X

�i ancestor of j�

�
L�i� j�

out�i�
�Ht�i��

Let us look at the jth coordinate of jL� �Xt �Xtj:
����
�L� �Ht �Ht��j�P

kHt�k�

���� �
����
Ct�j� �C��j�P

kHt�k�

���� �
�P

kHt�k�

Its limit is 0 because, when t goes to infinity,
P

j Ht�j� goes to
infinity (by lemma 2.4) and C��j�, Ct�j� are bounded by 1.

THEOREM 6.4. The limit of Xt is XImportance, i.e.,

limt���Xt � XImportance
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PROOF.

By the previous result,

lim
t���

j�L� � �� �Xtj � �

where 1 is the identity matrix (1 in the diagonal and 0 elsewhere).
Consider now the decomposition of Xt � St �Dt where St is in
Ker�L� � �� (the kernel of matrix L� � �), and Dt in the corre-
sponding orthogonal space where the restriction of L��� is invert-
ible. Because St is in Ker�L� � ��, we have �t� L� �Xt �Xt �
L� �Dt �Dt and so

lim
t���

j�L� � �� �Dtj � �

We can now restrict to the orthogonal space of Ker�L� � ��,
in which L� � � has an inverse called H . The matrix multiplica-
tion being continuous, we can multiply to the left by H , which is
constant, and thus

lim
t���

jDtj � �

Now if we use the fact that there is a single fixpoint solution for
L�, that mean that Ker�L� � �� is of dimension � and that

�t�Xt � �t �XImportance �Dt

where �t is a scalar. Now because jDtj converges to zero, and
jXtj � jXImportancej � �, we have:

lim
t���

Xt � XImportance
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