Adaptive Methods for the Computation of PageRank

Sepandar Kamvar, Taher Haveliwala, and Gene Golub

Stanford University

Abstract. We observe that the convergence patterns of pages in th&RRake
algorithm have a nonuniform distribution. Specifically,npaages converge to
their true PageRank quickly, while relatively few pagestakmuch longer time
to converge. Furthermore, we observe that these slow-ogingepages are gen-
erally those pages with high PageRank. We use this obsenatidevise a simple
algorithm to speed up the computation of PageRank, in wiierlPageRank of
pages that have converged are not recomputed at eachoitesétéer convergence.
This algorithm, which we call Adaptive PageRank, speedfiagomputation of

PageRank by nearly 30%.

1 Introduction

One of the best-known algorithms in web search is GoogleggRank algorithm [16].
PageRank computes the principal eigenvector of the magérscribing the hyperlinks
in the web using the famous Power Method [5]. Due to the shieerdd the web (over

3 billion pages), this computation can take several dayse8ipg up this computation
is important for two reasons. First, computing PageRank&ldyis necessary to reduce
the lag time from when a new crawl is completed to when thatvccan be made
available for searching. Secondly, recent approachessopelized and topic-sensitive
PageRank schemes [8, 18, 11] require computiagy PageRank vectors, each biased
towards certain types of pages. These approaches intéhsifyeed for faster methods
for computing PageRank.

Accelerating the PageRank algorithm poses many challeRgsts Haveliwala and
Kamvar proved in [9] that the convergence rate of the Powehbtkis relatively fast
(generally|X2|/|A\1]| = 0.85). Improving on this already fast convergence rate is a dif-
ficult problem. Further, many other fast eigensolvers (ewgrse iteration) are not fea-
sible for this problem because the size and sparsity of tliemegtrix makes inversion
or factorization prohibitively expensive.

In this paper, we make the following simple observation:dbevergence rates of
the PageRank values of individual pages during applicatfothe Power Method is
nonunifornt. That is, many pages converge quickly, with a few pages ¢pkinich
longer to converge. Furthermore, the pages that conveogdyshre generally those
pages with high PageRank.

We devise a simple algorithm that exploits this observatmapeed up the com-
putation of PageRank, called Adaptive PageRank. In thisralgn, the PageRank of
pages that have converged are not recomputed at eachategdter convergence. In
large-scale empirical studies, this algorithm speeds ejgdmputation of PageRank by
nearly 30%.

! The rank of each individual pageorresponds to the individual componemfé) of the current
iteratez®) of the Power Method.

2 Preliminaries

In this section we summarize the definition of PageRank [b@] review some of the
mathematical tools we will use in analyzing and improving siiandard iterative algo-
rithm for computing PageRank.

Underlying the definition of PageRank is the following baagsumption. A link
from a pageu € Web to a pagev € Web can be viewed as evidence thais an
“important” page. In particular, the amount of importanoaferred orw by « is pro-
portional to the importance af and inversely proportional to the number of pages
points to. Since the importance ofs itself not known, determining the importance for
every page € Web requires an iterative fixed-point computation.

To allow for a more rigorous analysis of the necessary coatfmurt, we next de-
scribe an equivalent formulation in terms of a random walltrendirected Web graph
G. Letu — v denote the existence of an edge frarto v in G. Letdeg(u) be the out-
degree of page in G. Consider a random surfer visiting paget timek. In the next
time step, the surfer chooses a negérom amongu’s out-neighborgv|u — v} uni-
formly at random. In other words, at tinker- 1, the surfer lands at nodg € {v|u — v}
with probability 1/ deg(u).

The PageRank of a pagés defined as the probability that at some particular time
stepk > K, the surfer is at pagé For sufficiently large/, and with minor modifi-
cations to the random walk, this probability is unique,sthated as follows. Consider
the Markov chain induced by the random walk @nwhere the states are given by the
nodes inGG, and the stochastic transition matrix describing the itemsfrom i to j is
given by P with P;; = 1/ deg(?).

For P to be a valid transition probability matrix, every node mhave at least 1
outgoing transition; i.e.P should have no rows consisting of all zeros. This holds if
G does not have any pages with outdegdewhich does not hold for the Web graph.
P can be converted into a valid transition matrix by adding mplete set of outgoing
transitions to pages with outdegr@en other words, we can define the new matfk
where all states have at least one outgoing transition ifiofle@ving way. Letn be the
number of nodes (pages) in the Web graph.d.dte then-dimensional column vector
representing a uniform probability distribution over atfides:

o= [ln. @

Let e be then-dimensional column vector where every elemgnt 1:
e = [1]nx1. (2)

Let d be then-dimensional column vector identifying the nodes with @gke):

0 {1 if deg(i) = 0,

0 otherwise

Then we construcP’ as follows:

y:cPT:v;
w = ||zl — |yl
Yy =y +wv;

Algorithm 1: Computingy = Ax

In terms of the random walk, the effect bfis to modify the transition probabilities so
that a surfer visiting a dangling page (i.e., a page with ntirdes) randomly jumps to
another page in the next time step, using the distributivergbywv.

By the Ergodic Theorem for Markov chains [6], the Markov chedefined byP’
has a unigue stationary probability distributionAif is aperiodic and irreducible; the
former holds for the Markov chain induced by the Web grapte tter holds iffG is
strongly connected, which is generatigt the case for the Web graph. In the context
of computing PageRank, the standard way of ensuring thipgpty is to add a new
set of complete outgoing transitions, with small transitirobabilities, toall nodes,
creating a complete (and thus strongly connected) transiffaph. In matrix notation,
we construct the irreducible Markov matiX’ as follows:

E=exvT

P'=cP' +(1-¢)E

In terms of the random walk, the effect &f is as follows. At each time step, with
probability (1 — ¢), a surfer visiting any node will jump to a random Web pageh@at
than following an outlink). The destination of the randomjuis chosen according to
the probability distribution given im. Artificial jumps taken because @f are referred
to asteleportation.

By redefining the vectoo given in Equation 1 to be nonuniform, so thatand £
add artificial transitions with nonuniform probabilitigdhe resultant PageRank vector
can be biased to prefer certain kinds of pages. For this neage refer tov as the
personalization vector.

For simplicity and consistency with prior work, the remanaf the discussion
will be in terms of the transpose matri¥, = (P”)T; i.e., the transition probability
distribution for a surfer at nodgeis given by row: of P”, and column of A.

Note that the edges artificially introduced Byand E never need to be explicitly
materialized, so this construction has no impact on effayjenr the sparsity of the
matrices used in the computations. In particular, the magector multiplicationy =
Ax can be implemented efficiently using Algorithm 1. In the altfons presented in
this paper, all matrix multiplications are assumed to uggoAthm 1.

Assuming that the probability distribution over the suddocation at time0 is
given byx(?), the probability distribution for the surfer’s locationtihe k is given by
x(®) = AF2(©) The unique stationary distribution of the Markov chain éided as
limy o z*), which is equivalent tdim;,_,.. A*z(?), and is independent of the initial
distributionz(®). This is simply the principal eigenvector of the matrx= (P")7,
which is exactly the PageRank vector we would like to compute

functionpageRank A, z(*, v) {
repeat
2D = Az ®);
6 = [|lx®*+D) —2k||;
until § < ¢;
return z**Y;

}

Algorithm 2: PageRank

The standard PageRank algorithm computes the principaheagtor using the
Power Method (Algorithm 2). That is, it begins with the umifodistributionz(®) = v
and computes successive iterai¢® = Axz(*—1 until convergence. Haveliwala and
Kamvar show in [9] that the convergence rate of the Power btbtin terms of number
of iterations, is fast for this problem (generallyz|/|\1| = .85). However, it is still im-
portant to accelerate the computation, since each matritiptication is so expensive
(on the order of 10 billion flops).

While many algorithms have been developed for fast eiggnovemmputations,
many of them are unsuitable for this problem because of e and sparsity of the
Web matrix (see Section 7.1 for a discussion of this).

3 Experimental Setup

In the following sections, we will be describing experimenin on the following data
sets. The $ANFORD.EDU link graph was generated from a crawl of teanf or d. edu
domain created in September 2002 by the Stanford WebBagecprohis link graph
contains roughly 280,000 nodes, with 3 million links, anduiees 12MB of storage.
We used $SANFORD.EDU while developing the Adaptive PageRank algorithm,éb g
a sense for its performance. For real-world, Web-scaleopmdnce measurements, we
used the IARGEWEB link graph, generated from a large crawl of the Web that hasbe
created by the Stanford WebBase project in January 2001 [®GEWEB contains
roughly 80M nodes, with close to a billion links, and reqeif6GB of storage. Both
link graphs had dangling nodes removed as described in TH#.graphs are stored
using an adjacency list representation, with pages reptegdy 4-byte integer identi-
fiers. On an AMD Athlon 1533MHz machine with a 6-way RAID-5 kliglume and
2GB of main memory, each application of Algorithm 1 on the 8p&fje LARGEWEB
dataset takes roughly 10 minutes. Given that computing Ragje generally requires
anywhere from 30-100 applications of Algorithm 1, depegdin the desired error, the
need for fast methods for graphs with billions of nodes iscle

We measured the rates of convergence of the PageRank andivedBpgeRank
using the L, norm of the residual vector; i.e.,

142 — 2.

We describe why the{ residual is an appropriate measure in [13].

4 Distribution of Convergence Rates

Table 1 and Figure 1 show convergence statistics for theqpaghe SANFORD.EDU
dataset. We say a the PageRanlof pagei has converged when

|2 B — 2 /12|) < 1073,

Table 1 shows the number of pages and average PageRankseftges that con-
verge in less than 15 iterations, and those pages that gmivemore than 15 iterations.
Notice that most pages converge in less than 15 iterationktheeir average PageRank
is far lower than those pages that converge in more than dfiges.

NUMBER OF PAGES|AVERAGE PAGERANK
t; < 15227597 2.6642e-06
t; > 15/54306 7.2487e-06
Total (281903 3.5473e-06

Table 1. Statistics about pages in theeAIFORD.EDU dataset whose convergence times are
quick (¢; < 15) and pages whose convergence times are long (15).

Figure 1(a) shows the profile of the bar graph, where eachdmesents a page
and the height of the bar is the convergence tipf that page. The pages are sorted
from left to right in order of convergence times. Notice thabst pages converge in
under 15 iterations, but there are some pages that overréfidgtes to converge.

Figure 1(b) shows a bar graph where the height of each barsepts the number of
pages that converge at a given convergence time. Agaircgtbiit most pages converge
in under 15 iterations, but there are some pages that ovéerlions to converge.

Figure 1(c) shows a bar graph where the height of each bagsepts the average
PageRank of the pages that converge in a given convergenee Notice that those
pages who converge in less than 15 iterations generally hdoeer PageRank than
those pages who converge in over 50 iterations. This istifitesd in Figure 1(d) as
well, where the height of each bar represents the averageRaady of those pages that
converge within a certain interval. (i.e. the bar labeled r&presents the pages that
converge in anywhere from 1 to 7 iterations, and the bar é&ab®12” represents the the
pages that converge in anywhere from 36 to 42 iterations.)

Figures 2 and 3 show some statistics for thieRIGEWEB dataset. Figure 2(a) shows
the proportion of pages whose ranks converge to a relatieeatoce of.001 in each
iteration. Figure 2(b) shows the cumulative version of thms data; i.e., it shows the
percentage of pages that have converged up through a partigwation. We see that
in 16 iterations, the ranks for over two-thirds of pages hamverged. Figure 3 shows
the average PageRanks of pages that converge in varioasates. Notice that those
pages that are slow to converge tend to have higher PageRank.

x 10

Convergence Time
Number of Pages

3 0 10 20 30 40 50
Pages vin® Convergence Time
@) (b)
x10° x10°

9 T 1.8

8 1.6

7 14

6 1.2
X X
351 3 1
o o
[} [}
24t 0.8t
[a o

w
o
o

N
I
IS

(=2
%

o
o N

0 10 20 30 40 50 7 14 21 28 35 42 49
Convergence Times Convergence Times
(©) (d)

Fig. 1. Experiments on $ANFORD.EDU dataset. (a) Profile of bar graph where each bar rep-
resents a page and its height represents its convergence timégb) Bar graph where x axis
represents the discrete convergence tirend the height of; represents the number of pages
that have convergence tinie(c) Bar graph where the height of each bar represents thagave
PageRank of the pages that converge in a given convergenee(tl) Bar graph where the height
of each bar represents the average PageRank of the pagesritatge in a given interval.

N

o
©

o
®

011

)
3

g

=

@
=)
>

Proportion of Pages
=
o
8
Y
:

o
w

o
S
=
Proportion of Pages (Cumulative)
S
&

o
N

0.021

o
P

15 20 25 30 35 40 45
Convergence Time

o

5 10 15 20 25 30 35 40 45
Convergence Time

(@) (b)

Fig. 2. Experiments on the ARGEWEB dataset. (a) Bar graph whereaxis represents the con-
vergence time in number of iterations, and the height of barepresents the proportion of pages
that have convergence timg(b) Cumulative plot of convergence times. Thaxis gives the time

t in number of iterations, and thg-axis gives the proportion of pages that have a convergence
time < t.

Fig. 3. Average PageRank vs. Convergence time (in number of itersitifor the LARGEWEB
dataset. Note that pages that are slower to converge totavedialerance of001 tend to have
high PageRank.

5 Adaptive PageRank Algorithm

The skewed distribution of convergence times shown in tlegipus section suggests
that the running time of the PageRank algorithm can be sagmifly reduced by elim-
inating redundant computation. In particular, we do notdhgerecompute the Page-
Ranks of the pages that have already converged, and we deedto recompute the
contribution of PageRank from pages that have convergetthtr pages. We discuss in
this section how each of these redundancies can be elirdinate

5.1 Algorithm Intuition

We begin by describing the intuition behind the Adaptive éRank algorithm. We
consider next a single iteration of the Power Method, anavdtmwv we can reduce the
cost.

Consider that we have completedterations of the power method. Using the iterate
z(®) we now wish to generate the iteraté**1). Let C' be set of pages that have
converged to a given tolerance, alNcbe the set of pages that have not yet converged,.

We can split the matrixl defined in Section 2 into two submatrices. L&t be the
m x n submatrix corresponding to the inlinks of thosgpages whose PageRanks have
not yet converged, and¢ be the(n — m) x n submatrix corresponding to the inlinks
of those pages that have already converged.

Let us likewise split the current iterate of the PageRankaree*) into the m-

vectormg\’f) corresponding to the componentsagf) that have not yet converged, and

the (m — n)-vectorm(ck) corresponding to the componentsof*) that have not yet
converged that have already converged.

We may orderd andx(¥) as follows:

* w(k)
a2 ="l (3)
Lo
and
A
A= (Ag) . (4)

We may now write the next iteration of the Power Method as:

m%cﬂ) B (AN) . ccg\’,“)
:v(ckﬂ) Ac :n(ck) '
However, since the elements mﬁ“) have already converged, we do not need to

recomputev(c“l). Therefore, we may simplify each iteration of the compuotatd be:

:Bg\lfﬂ) = Anz® (5)
:B(CkH) = w(clf). (6)

The basic Adaptive PageRank algorithm is given in Algorithm

functionadaptivePR(A4, (¥, v) {
repeat
m%““) = ANiU(k)§
ol =l
[N, C] = detectConverged(z®, & *+1) ¢);
periodically,d = [|Az® — x*|;;
until § < ¢
return z*+Y;

}

Algorithm 3: Adaptive PageRank

Identifying pages in each iteration that have convergedéspensive. However,
reordering the matrixd at each iteration is expensive. Therefore, we exploit tlea id
given above by periodically identifying converged paged eonstructingd 5 without
explicitly reordering identifiers. Sincé y is smaller tham, the iteration cost for future
iterations is reduced. We describe the details of the alyorin the next section.

5.2 Filter-Based Adaptive PageRank

Since the web matrid is several gigabytes in size, forming the submatrix needed
in Equation 5 will not be practical to do in each iteration.rfRermore, there is in
general no efficient way to simply “ignore” the unnecessatyies (e.g., edges pointing
to converged pages) i if they are scattered throughadt We describe in this section
an efficient implementation of the Adaptive PageRank scheme

Consider the following reformulation of the algorithm theeis described in the pre-
vious section. Consider the mattixas described in Equation 4. Note that the submatrix
Ac is never actually used in computindg®t?). Let us define the matri¥d’ as:

!’ AN
A= (!) . (7)
where we have replaced with an all-zero matrix of the same dimensionsAs.
Similarly, let us defina:’(ck) as:
0
c z

Now note that we can express an iteration of Adaptive PageRan
*tD) = A'g®) 4 :I:’(le). 9)

SinceA’ has the same dimensions 4sit seems we have not reduced the iteration
cost; however, note that the cost of the matrix-vector mlidtation is essentially given
by the number of nonzero entries in the matriat the matrix dimensions.

2 More precisely, since the multiplicatiofiz: is performed using Algorithm 1 using the matrix
P and the vectop, the number of nonzero entriesfhdetermines the iteration cost. Note that

functionfilterAPR (A, 2, v) {

repeat
w(kJrl) _ A//w(k) _’_wg"
periodically,

[N, C] = detectConverged(z®, z*+Y ¢);
[A"] = filter(A”, N, O);
[xZ] = filter(z®), C);
periodically,d = [|Az® — x*|;;
until 6 < ¢;
return ¢+

}

Algorithm 4: Filter-Based Adaptive PageRank

The above reformulation gives rise to the filter-based AdagtageRank scheme:
if we can periodically increase the sparsity of the mattixwe can lower the average
iteration cost. Consider the set of indig@®f pages that have been identified as having
converged. We define the matr¥’ as follows:

0 ifieC
Al = ’ 10
I {AZ—J— otherwise. (10)

In other words, when constructing’, we replace the rowin A with zeros ifi € C.
Similarly, definex{. as follows:

(k)Y. F 45
(k) (\")); ifieC,
i = . 11
("¢ {0 otherwise. (11)

Note thatA” is much sparser than, so that the cost of the multiplicatioft” x is
much cheaper than the cost of the multiplicati®a. In fact, the cost is the same as if
we had an ordered matrix, and performed the multiplicatigrz. Now note that

2kt — p7 0 (R) +m//(c{€) (12)

represents an iteration of the Adaptive PageRank algoridorexpensive reorder-
ing of page identifiers is needed. The filter-based impleatent of Adaptive PageRank
is given in Algorithm 4.

5.3 Modified Adaptive PageRank

The core of the Adaptive PageRank algorithm is in repladigrhatrix multiplication
Az*) with equations 5 and 6, reducing redundant computation byewomputing the
PageRanks of those pagedr(i.e., those pages that have converged).

subsequently, when we discuss zeroing out rowd ahis corresponds implementationally to
zeroing out rows of the sparse matix

functionmodifiedAPR(A, (¥, v) {

repeat
2§ = Anna +y;
ol —alt)
periodically,

[N, C] = detectConverged(x®, z*+1 ¢);
Y= ACNiU(CIvC);
periodically,d = ||Az®) — x*||;;
until § < ¢
return ¢+ 1);

}

Algorithm 5: Modified Adaptive PageRank

In this section, we show how to further reduce redundant edatjpn by not re-
computing the components of the PageRanks of those pag¥sdue to links from
those pages in'.

More specifically, we can write the matrikin equation 4 as follows:

e AnN Anc
Acn Acc

where Ay are the links from pages that have not converged to pagesdvat not
convergedAcy are links from pages that have converged to pages that haveno
verged, and so on.

We may now rewrite equation 5 as follows:

)

k1) = ANN.’Bg\I;) + AC]\[.’BgC .

zy

Since ther does not change at each iteration, the compoﬂ@)\tm(ck) does not

change at each iteration. Therefore, we only need to rectnm:mnputeACNm(Ck)
each time the matrid is reordered. This variant of Adaptive PageRank is sumradriz
in Algorithm 5.

As with the standard Adaptive PageRank scheme, explicitiexing of identifiers
is not necessary in the implementation. As shown in Algamith we can simply form
two matricesAcy and Axn that have their “deleted” columns and rows zeroed out,
increasing their sparsity and thereby reducing their éffesize. We expect that this
algorithm should speed up the computation of PageRank evtref as the partial sum
denoted ag in Algorithm 6 is not recomputed in every iteration.

5.4 Advantages

We now discuss how the Adaptive PageRank scheme speeds gpriputation of
PageRank. The key parameter in the algorithm is how ofteshaiotify converged pages
and construct the “compacted” matti¥’ (or in the case of Modified AdaptivePageR-
ank, AY. 5 and A% y); since the cost of constructing” from A is on the order of the

functionfilterMAPR (A4, z(®, v) {

repeat
m(kJrl) — ANNCL'(k) +y+ w’é;
periodically,

N' =N, C'=C; I* Keep track of prev. values */
[N, C] = detectConverged(x®, z*+1 ¢);
[ANn, Ao = filter (A% n/, Al i, N, C);
[xZ] = filter(z ¥, C);
y = Acnz™;
periodically,d = ||Az®) — x*||;;
until § < ¢
return z*+1;

}

Algorithm 6: Filter-Based Modified Adaptive PageRank

cost of the multiplyAx, we do not want to apply it too often. However, looking at the
convergence statistics given in Section 4, it is clear thaheeriodically filtering out
the “converged edges” from will be effective in reducing the cost of future iterations
for 3 reasons:

1. Reduced i/o for reading in the link structure
2. Fewer memory accesses when executing Algorithm 1
3. Fewer flops when executing Algorithm 1

We expect the number of iterations required for convergémstay roughly constant,
although the average iterationst will be lowered.

6 Experimental Results

In our experiments, we found that better speedups wer@aattarhen we ran the adap-
tive PageRank algorithm in phases where in each phase, we Wéf the original
version of the link structure, iterate a certain number wfe (in our case 8), prune
the link structure, and iterate some additional numbemoés (again, 8). In successive
phases, we reduce the tolerance threshold used when prumiegch phase, pruning
using the current threshold is done once, during the 8thtitar3 This strategy tries to
keep all pages at roughly the same level of error while compsuccessive iterates to
achieve some specified final tolerance.

A comparison of the total cost of the standard PageRankighgoand the two vari-
ants of the Adaptive PageRank algorithm follow. Figure 4l@picts the total number
of FLOPS needed to compute the PageRank vector to aadidual threshold of0—3
and10~* using the Power Method and the two variants of the Adaptiveg?®lethod.
The Adaptive algorithms operated in phases as describeealsing10-2, 10-3, and

® For slightly better performance, our implementations cfa@ithms 4 and 6 fold thélter()
operation into the previous matrix multiply step.

40 400
D Standard O Standard
35 350
EAdaptive (APR) B Adaptive (APR)
30 17 300 1
OModified Adaptive (MAPR) OModified Adaptive (MAPR)
[
a 250 —
g 8
[2 200 —
o £
S = 150 —
=
100 —
50 —
0
0.0001 0.001 0.0001
Final L1 Residual Final L1 Residual
(a) (b)
50
45 | |OStandard
« 40 EAdaptive (APR)
c
O 354 |OModified Adaptive (MAPR)
g
g —
= 25 —
°©
o 20 —
a
€ 15
S
Z L
5 -
0
0.001 0.0001
Final L1 Residual
(©

Fig. 4. Experiments on BRGEWEB dataset depicting total cost for computing the PageRank
vector to an |y residual threshold of0~2 and10~*; (a) FLOPS (b) Wallclock time (c) Number
of iterations

10~* as the successive tolerances. As shown in Figure 4(a), thdifigld Adaptive
PageRankNIAPR) algorithm decreases the number of FLOPS needed by 26.2% and
27.8% in reaching final L residuals oftl0—2 and 10—, respectively, compared with

the standard power method. Figure 4(b) depicts the totdtlwaek time needed for the
same scenarios. TRdAPR algorithm reduces the wallclock time needed to compute
the PageRank vectors by 20.3% and 21.6% in reaching finadsiduals ofl0—3 and

10~%, respectively. Note that the adaptive methods took a feveriterations for reach-

ing the desired tolerances than the standard power metsaghavn in Figure 4(c);
however, as the average iteration cost was much lower, tamtbgpeedup is still sig-
nificant.

7 Related Work

7.1 Fast Eigenvector Computation

The field of numerical linear algebra is a mature field, andyra@gorithms have been
developed for fast eigenvector computations. However ynudirihese algorithms are
unsuitable for this problem, because they require matrigrsions or matrix decompo-
sitions that are prohibitively expensive (both in termsieésand space) for a matrix of
the size and sparsity of the Web-link matrix. For examipieer se iteration will find the

principal eigenvector ofd in one iteration, since we know the first eigenvalue. How-
ever, inverse iteration requires the inversiomofvhich is anO(n?) operation. Th&QR
Algorithm with shifts is also a standard fast method for solving nonsymmetricreige
value problems. However, the QR Algorithm requires a QRdiazation of A at each
iteration, which is also a®(n?) operation. The\rnoldi algorithm is also often used for
nonsymmetric eigenvalue problems. Current work by Golub@reif (unpublished) is
exploring the use of variants of the Arnoldi algorithm foethageRank problem. For a
comprehensive review of these methods, see [5].

However, there is a class of methods from numerical linegelaia that are useful
for this problem. We may rewrite the eigenproblet® = «x as the linear system of
equations(/ — A)x = 0, and use the classical iterative methods for linear systems
Jacobi, Gauss-Seidel, and Successive Overrelaxation)(S@Rthe matrixA in the
PageRank problem, the Jacobi method is equivalent to thePoethod. Gauss-Seidel
has been shown empirically to be faster for the PageRankeyoli]. Note, however,
that to use Gauss-Seidel, we would have to sort the adjadestcgpresentation of the
Web graph, so that back-links for pages, rather than fordiaks, are stored consec-
utively. The myriad of multigrid methods are also appli@abd this problem. For a
review of multigrid methods, see [15].

7.2 PageRank

Seminal algorithms for graph analysis for Web-search weteduced by Page et
al. [16] (PageRank) and Kleinberg [14] (HITS). Much additdwork has been done on
improving these algorithms and extending them to new seardtiext mining tasks [3,
4,17,2,18, 8]. More applicable to our work are several papérich discuss the com-
putation of PageRank itself [7, 1, 11]. Haveliwala [7] exjgl® memory-efficient com-
putation, and suggests using induced orderings, ratharrdsduals, to measure con-
vergence. Arasu et al. [1] uses the Gauss-Seidel methocktalsgp convergence, and
looks at possible speed-ups by exploiting structural prigeeof the Web graph. Jeh
and Widom [11] explore the use of dynamic programming to cot@a large number
of personalized PageRank vectors simultaneously. Kantedrese extrapolation tech-
niques in [13] and aggregation/disaggregation techniqug®] to significantly speed
up convergence. Our work is the first to exploit the fact tloaihe pages converge more
quickly than others to speed up the computation of PageRuttkyery little overhead.

8 Conclusion

In this work, we present two contributions.

First, we show that most pages in the web converge to theiRRageRank quickly,
while relatively few pages take much longer to converge. Wéher show that those
slow-converging pages generally have high PageRank, arse thages that converge
quickly generally have low PageRank.

Second, we develop two algorithms, called Adaptive PagkRad Modified Adap-
tive PageRank, that exploit this observation to speed ugdhgputation of PageRank
by 18% and 28%, resp., by avoiding redundant computation.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. PageRankmatation and the structure of
the web: Experiments and algorithms. Rnoceedings of the Eleventh International World
Wide Web Conference, Poster Track, 2002.

. K. Bharat and M. R. Henzinger. Improved algorithms fori¢agistillation in a hyperlinked

environment. IrProceedings of the ACM-SGIR, 1998.

. S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghaand S. Rajagopalan. Auto-

matic resource compilation by analyzing hyperlink stroetand associated text. Rroceed-
ings of the Seventh International World Wide Web Conference, 1998.

. S. Chakrabarti, M. van den Berg, and B. Dom. Focused angwh new approach to topic-

specific web resource discovery. Pnoceedings of the Eighth International World Wide W\eb
Conference, 1999.

. G. H. Golub and C. F. V. LoarMatrix Computations. The Johns Hopkins University Press,

Baltimore, 1996.

. G. Grimmett and D. StirzakelProbability and Random Processes. Oxford University Press,

19809.

. T. H. Haveliwala. Efficient computation of PageRa8tanford University Technical Report,

1999.

. T. H. Haveliwala. Topic-sensitive PageRank.Froceedings of the Eleventh International

World Wide Web Conference, 2002.

. T. H. Haveliwala and S. D. Kamvar. The second eigenvalubefSoogle matrixanford

University Technical Report, 2003.

J. Hirai, S. Raghavan, H. Garcia-Molina, and A. PaepdkiebBase: A repository of web
pages. IrProceedings of the Ninth International World W de Web Conference, 2000.

G. Jeh and J. Widom. Scaling personalized web searctPrdeeedings of the Twelfth
International World Wide Web Conference, 2003.

S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. @ol Exploting the block
structure of the web for computing PageRaBtanford University Technical Report, 1999.
S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. @l Extrapolation methods
for accelerating PageRank computationsPtoceedings of the Twelfth International World
Wide Web Conference, 2003.

J. Kleinberg. Authoritative sources in a hyperlinkedimmment. InProceedings of the
ACM-S AM Symposium on Discrete Algorithms, 1998.

U. Krieger. Numerical solution of large finite markov ofsby algebraic multigrid tech-
niques. InProceedings of the 2nd International Werkshop on the Numerical Solution of
Markov Chains, 1995.

L. Page, S. Brin, R. Motwani, and T. Winograd. The Pag&Rd#ation ranking: Bringing
order to the webSanford Digital Libraries Working Paper, 1998.

D. Rafiei and A. O. Mendelzon. What is this page known fasth@uting web page reputa-
tions. InProceedings of the Ninth International World Wde Web Conference, 2000.

M. Richardson and P. Domingos. The intelligent surfesbBbilistic combination of link and
content information in PageRank. Advances in Neural Information Processing Systems,
volume 14. MIT Press, Cambridge, MA, 2002.

