
Adaptive Methods for the Computation of PageRank

Sepandar Kamvar, Taher Haveliwala, and Gene Golub

Stanford University
Abstract. We observe that the convergence patterns of pages in the PageRank
algorithm have a nonuniform distribution. Specifically, many pages converge to
their true PageRank quickly, while relatively few pages take a much longer time
to converge. Furthermore, we observe that these slow-converging pages are gen-
erally those pages with high PageRank. We use this observation to devise a simple
algorithm to speed up the computation of PageRank, in which the PageRank of
pages that have converged are not recomputed at each iteration after convergence.
This algorithm, which we call Adaptive PageRank, speeds up the computation of
PageRank by nearly 30%.

1 Introduction

One of the best-known algorithms in web search is Google’s PageRank algorithm [16].
PageRank computes the principal eigenvector of the matrix describing the hyperlinks
in the web using the famous Power Method [5]. Due to the sheer size of the web (over
3 billion pages), this computation can take several days. Speeding up this computation
is important for two reasons. First, computing PageRank quickly is necessary to reduce
the lag time from when a new crawl is completed to when that crawl can be made
available for searching. Secondly, recent approaches to personalized and topic-sensitive
PageRank schemes [8, 18, 11] require computingmany PageRank vectors, each biased
towards certain types of pages. These approaches intensifythe need for faster methods
for computing PageRank.

Accelerating the PageRank algorithm poses many challenges. First, Haveliwala and
Kamvar proved in [9] that the convergence rate of the Power Method is relatively fast
(generally,|λ2|/|λ1| = 0.85). Improving on this already fast convergence rate is a dif-
ficult problem. Further, many other fast eigensolvers (e.g.inverse iteration) are not fea-
sible for this problem because the size and sparsity of the web matrix makes inversion
or factorization prohibitively expensive.

In this paper, we make the following simple observation: theconvergence rates of
the PageRank values of individual pages during applicationof the Power Method is
nonuniform1. That is, many pages converge quickly, with a few pages taking much
longer to converge. Furthermore, the pages that converge slowly are generally those
pages with high PageRank.

We devise a simple algorithm that exploits this observationto speed up the com-
putation of PageRank, called Adaptive PageRank. In this algorithm, the PageRank of
pages that have converged are not recomputed at each iteration after convergence. In
large-scale empirical studies, this algorithm speeds up the computation of PageRank by
nearly 30%.

1 The rank of each individual pagei corresponds to the individual componentsx
(k)
i

of the current
iteratex(k) of the Power Method.



2 Preliminaries

In this section we summarize the definition of PageRank [16] and review some of the
mathematical tools we will use in analyzing and improving the standard iterative algo-
rithm for computing PageRank.

Underlying the definition of PageRank is the following basicassumption. A link
from a pageu ∈ Web to a pagev ∈ Web can be viewed as evidence thatv is an
“important” page. In particular, the amount of importance conferred onv by u is pro-
portional to the importance ofu and inversely proportional to the number of pagesu
points to. Since the importance ofu is itself not known, determining the importance for
every pagei ∈ Web requires an iterative fixed-point computation.

To allow for a more rigorous analysis of the necessary computation, we next de-
scribe an equivalent formulation in terms of a random walk onthe directed Web graph
G. Let u → v denote the existence of an edge fromu to v in G. Let deg(u) be the out-
degree of pageu in G. Consider a random surfer visiting pageu at timek. In the next
time step, the surfer chooses a nodevi from amongu’s out-neighbors{v|u → v} uni-
formly at random. In other words, at timek+1, the surfer lands at nodevi ∈ {v|u → v}
with probability1/ deg(u).

The PageRank of a pagei is defined as the probability that at some particular time
stepk > K, the surfer is at pagei. For sufficiently largeK, and with minor modifi-
cations to the random walk, this probability is unique, illustrated as follows. Consider
the Markov chain induced by the random walk onG, where the states are given by the
nodes inG, and the stochastic transition matrix describing the transition from i to j is
given byP with Pij = 1/ deg(i).

For P to be a valid transition probability matrix, every node musthave at least 1
outgoing transition; i.e.,P should have no rows consisting of all zeros. This holds if
G does not have any pages with outdegree0, which does not hold for the Web graph.
P can be converted into a valid transition matrix by adding a complete set of outgoing
transitions to pages with outdegree0. In other words, we can define the new matrixP ′

where all states have at least one outgoing transition in thefollowing way. Letn be the
number of nodes (pages) in the Web graph. Letv be then-dimensional column vector
representing a uniform probability distribution over all nodes:

v = [
1

n
]n×1. (1)

Let e be then-dimensional column vector where every elementei = 1:

e = [1]n×1. (2)

Let d be then-dimensional column vector identifying the nodes with outdegree0:

di =

{

1 if deg(i) = 0,

0 otherwise

Then we constructP ′ as follows:

D = d · v T

P ′ = P + D.



y = cP T x;
w = ||x||1 − ||y||1;
y = y + wv;

Algorithm 1: Computingy = Ax

In terms of the random walk, the effect ofD is to modify the transition probabilities so
that a surfer visiting a dangling page (i.e., a page with no outlinks) randomly jumps to
another page in the next time step, using the distribution given byv.

By the Ergodic Theorem for Markov chains [6], the Markov chain defined byP ′

has a unique stationary probability distribution ifP ′ is aperiodic and irreducible; the
former holds for the Markov chain induced by the Web graph. The latter holds iffG is
strongly connected, which is generallynot the case for the Web graph. In the context
of computing PageRank, the standard way of ensuring this property is to add a new
set of complete outgoing transitions, with small transition probabilities, toall nodes,
creating a complete (and thus strongly connected) transition graph. In matrix notation,
we construct the irreducible Markov matrixP ′′ as follows:

E = e × v T

P ′′ = cP ′ + (1 − c)E

In terms of the random walk, the effect ofE is as follows. At each time step, with
probability(1 − c), a surfer visiting any node will jump to a random Web page (rather
than following an outlink). The destination of the random jump is chosen according to
the probability distribution given inv. Artificial jumps taken because ofE are referred
to asteleportation.

By redefining the vectorv given in Equation 1 to be nonuniform, so thatD andE
add artificial transitions with nonuniform probabilities,the resultant PageRank vector
can be biased to prefer certain kinds of pages. For this reason, we refer tov as the
personalization vector.

For simplicity and consistency with prior work, the remainder of the discussion
will be in terms of the transpose matrix,A = (P ′′)T ; i.e., the transition probability
distribution for a surfer at nodei is given by rowi of P ′′, and columni of A.

Note that the edges artificially introduced byD andE never need to be explicitly
materialized, so this construction has no impact on efficiency or the sparsity of the
matrices used in the computations. In particular, the matrix-vector multiplicationy =
Ax can be implemented efficiently using Algorithm 1. In the algorithms presented in
this paper, all matrix multiplications are assumed to use Algorithm 1.

Assuming that the probability distribution over the surfer’s location at time0 is
given byx(0), the probability distribution for the surfer’s location attimek is given by
x(k) = Akx(0). The unique stationary distribution of the Markov chain is defined as
limk→∞ x(k), which is equivalent tolimk→∞ Akx(0), and is independent of the initial
distributionx(0). This is simply the principal eigenvector of the matrixA = (P ′′)T ,
which is exactly the PageRank vector we would like to compute.



functionpageRank(A, x(0), v) {
repeat

x(k+1) = Ax(k);
δ = ||x(k+1) − xk||1;

until δ < ε;
return x(k+1);
}

Algorithm 2: PageRank

The standard PageRank algorithm computes the principal eigenvector using the
Power Method (Algorithm 2). That is, it begins with the uniform distributionx(0) = v

and computes successive iteratesx(k) = Ax(k−1) until convergence. Haveliwala and
Kamvar show in [9] that the convergence rate of the Power Method, in terms of number
of iterations, is fast for this problem (generally,|λ2|/|λ1| = .85). However, it is still im-
portant to accelerate the computation, since each matrix multiplication is so expensive
(on the order of 10 billion flops).

While many algorithms have been developed for fast eigenvector computations,
many of them are unsuitable for this problem because of the size and sparsity of the
Web matrix (see Section 7.1 for a discussion of this).

3 Experimental Setup

In the following sections, we will be describing experiments run on the following data
sets. The STANFORD.EDU link graph was generated from a crawl of thestanford.edu
domain created in September 2002 by the Stanford WebBase project. This link graph
contains roughly 280,000 nodes, with 3 million links, and requires 12MB of storage.
We used STANFORD.EDU while developing the Adaptive PageRank algorithm, to get
a sense for its performance. For real-world, Web-scale performance measurements, we
used the LARGEWEB link graph, generated from a large crawl of the Web that had been
created by the Stanford WebBase project in January 2001 [10]. LARGEWEB contains
roughly 80M nodes, with close to a billion links, and requires 3.6GB of storage. Both
link graphs had dangling nodes removed as described in [16].The graphs are stored
using an adjacency list representation, with pages represented by 4-byte integer identi-
fiers. On an AMD Athlon 1533MHz machine with a 6-way RAID-5 disk volume and
2GB of main memory, each application of Algorithm 1 on the 80Mpage LARGEWEB

dataset takes roughly 10 minutes. Given that computing PageRank generally requires
anywhere from 30-100 applications of Algorithm 1, depending on the desired error, the
need for fast methods for graphs with billions of nodes is clear.

We measured the rates of convergence of the PageRank and Adaptive PageRank
using the L1 norm of the residual vector; i.e.,

||Ax(k) − x(k)||1.

We describe why the L1 residual is an appropriate measure in [13].



4 Distribution of Convergence Rates

Table 1 and Figure 1 show convergence statistics for the pages in the STANFORD.EDU
dataset. We say a the PageRankxi of pagei has converged when

|x
(k+1)
i − x

(k)
i |/|xi|

(k) < 10−3.

Table 1 shows the number of pages and average PageRanks of those pages that con-
verge in less than 15 iterations, and those pages that converge in more than 15 iterations.
Notice that most pages converge in less than 15 iterations, and their average PageRank
is far lower than those pages that converge in more than 15 iterations.

NUMBER OF PAGES AVERAGE PAGERANK

ti ≤ 15 227597 2.6642e-06
ti > 15 54306 7.2487e-06
Total 281903 3.5473e-06

Table 1. Statistics about pages in the STANFORD.EDU dataset whose convergence times are
quick (ti ≤ 15) and pages whose convergence times are long (ti > 15).

Figure 1(a) shows the profile of the bar graph, where each bar represents a pagei
and the height of the bar is the convergence timeti of that pagei. The pages are sorted
from left to right in order of convergence times. Notice thatmost pages converge in
under 15 iterations, but there are some pages that over 40 iterations to converge.

Figure 1(b) shows a bar graph where the height of each bar represents the number of
pages that converge at a given convergence time. Again, notice that most pages converge
in under 15 iterations, but there are some pages that over 40 iterations to converge.

Figure 1(c) shows a bar graph where the height of each bar represents the average
PageRank of the pages that converge in a given convergence time. Notice that those
pages who converge in less than 15 iterations generally havea lower PageRank than
those pages who converge in over 50 iterations. This is illustrated in Figure 1(d) as
well, where the height of each bar represents the average PageRank of those pages that
converge within a certain interval. (i.e. the bar labeled “7” represents the pages that
converge in anywhere from 1 to 7 iterations, and the bar labeled “42” represents the the
pages that converge in anywhere from 36 to 42 iterations.)

Figures 2 and 3 show some statistics for the LARGEWEB dataset. Figure 2(a) shows
the proportion of pages whose ranks converge to a relative tolerance of.001 in each
iteration. Figure 2(b) shows the cumulative version of the same data; i.e., it shows the
percentage of pages that have converged up through a particular iteration. We see that
in 16 iterations, the ranks for over two-thirds of pages haveconverged. Figure 3 shows
the average PageRanks of pages that converge in various iterations. Notice that those
pages that are slow to converge tend to have higher PageRank.



0 0.5 1 1.5 2 2.5 3

x 10
5

0

10

20

30

40

50

Pages

C
on

ve
rg

en
ce

 T
im

e

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Convergence Time
N

um
be

r 
of

 P
ag

es

(a) (b)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9
x 10

−5

Convergence Times

P
ag

eR
an

k

7 14 21 28 35 42 49
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

−5

Convergence Times

P
ag

eR
an

k

(c) (d)

Fig. 1. Experiments on STANFORD.EDU dataset. (a) Profile of bar graph where each bar rep-
resents a pagei, and its height represents its convergence timeti. (b) Bar graph where x axis
represents the discrete convergence timet, and the height ofti represents the number of pages
that have convergence timet. (c) Bar graph where the height of each bar represents the average
PageRank of the pages that converge in a given convergence time. (d) Bar graph where the height
of each bar represents the average PageRank of the pages thatconverge in a given interval.



0 5 10 15 20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Convergence Time

P
ro

po
rt

io
n 

of
 P

ag
es

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Convergence Time

P
ro

po
rt

io
n 

of
 P

ag
es

 (
C

um
ul

at
iv

e)

(a) (b)

Fig. 2. Experiments on the LARGEWEB dataset. (a) Bar graph wherex-axis represents the con-
vergence timet in number of iterations, and the height of barti represents the proportion of pages
that have convergence timet. (b) Cumulative plot of convergence times. Thex-axis gives the time
t in number of iterations, and they-axis gives the proportion of pages that have a convergence
time≤ t.

0 10 20 30 40 50
0

1

2

3

4

5

6

7
x 10

−8

Fig. 3. Average PageRank vs. Convergence time (in number of iterations) for the LARGEWEB

dataset. Note that pages that are slower to converge to a relative tolerance of.001 tend to have
high PageRank.



5 Adaptive PageRank Algorithm

The skewed distribution of convergence times shown in the previous section suggests
that the running time of the PageRank algorithm can be significantly reduced by elim-
inating redundant computation. In particular, we do not need to recompute the Page-
Ranks of the pages that have already converged, and we do not need to recompute the
contribution of PageRank from pages that have converged to other pages. We discuss in
this section how each of these redundancies can be eliminated.

5.1 Algorithm Intuition

We begin by describing the intuition behind the Adaptive PageRank algorithm. We
consider next a single iteration of the Power Method, and show how we can reduce the
cost.

Consider that we have completedk iterations of the power method. Using the iterate
x(k), we now wish to generate the iteratex(k+1). Let C be set of pages that have
converged to a given tolerance, andN be the set of pages that have not yet converged,.

We can split the matrixA defined in Section 2 into two submatrices. LetAN be the
m×n submatrix corresponding to the inlinks of thosem pages whose PageRanks have
not yet converged, andAC be the(n − m) × n submatrix corresponding to the inlinks
of those pages that have already converged.

Let us likewise split the current iterate of the PageRank vector x(k) into them-
vectorx(k)

N corresponding to the components ofx(k) that have not yet converged, and

the (m − n)-vectorx(k)
C corresponding to the components ofx(k) that have not yet

converged that have already converged.
We may orderA andx(k) as follows:

x(k) =

(

x
(k)
N

x
(k)
C

)

(3)

and

A =

(

AN

AC

)

. (4)

We may now write the next iteration of the Power Method as:
(

x
(k+1)
N

x
(k+1)
C

)

=

(

AN

AC

)

·

(

x
(k)
N

x
(k)
C

)

.

However, since the elements ofx
(k)
C have already converged, we do not need to

recomputex(k+1)
C . Therefore, we may simplify each iteration of the computation to be:

x
(k+1)
N = ANx(k) (5)

x
(k+1)
C = x

(k)
C . (6)

The basic Adaptive PageRank algorithm is given in Algorithm3.



functionadaptivePR(A, x(0), v) {
repeat

x
(k+1)
N

= ANx(k);

x
(k+1)
C

= x
(k)
C

;
[N, C] = detectConverged(x(k), x(k+1), ε);
periodically,δ = ||Ax(k) − xk||1;

until δ < ε;
return x(k+1);
}

Algorithm 3: Adaptive PageRank

Identifying pages in each iteration that have converged is inexpensive. However,
reordering the matrixA at each iteration is expensive. Therefore, we exploit the idea
given above by periodically identifying converged pages and constructingAN without
explicitly reordering identifiers. SinceAN is smaller thanA, the iteration cost for future
iterations is reduced. We describe the details of the algorithm in the next section.

5.2 Filter-Based Adaptive PageRank

Since the web matrixA is several gigabytes in size, forming the submatrixAN needed
in Equation 5 will not be practical to do in each iteration. Furthermore, there is in
general no efficient way to simply “ignore” the unnecessary entries (e.g., edges pointing
to converged pages) inA if they are scattered throughoutA. We describe in this section
an efficient implementation of the Adaptive PageRank scheme.

Consider the following reformulation of the algorithm thatwas described in the pre-
vious section. Consider the matrixA as described in Equation 4. Note that the submatrix
AC is never actually used in computingx(k+1). Let us define the matrixA′ as:

A′ =

(

AN

0

)

. (7)

where we have replacedAC with an all-zero matrix of the same dimensions asAC .
Similarly, let us definex′(k)

C as:

x′(k)
C =

(

0

x
(k)
C

)

. (8)

Now note that we can express an iteration of Adaptive PageRank as

x(k+1) = A′x(k) + x′(k)
C . (9)

SinceA′ has the same dimensions asA, it seems we have not reduced the iteration
cost; however, note that the cost of the matrix-vector multiplication is essentially given
by the number of nonzero entries in the matrix,not the matrix dimensions.2

2 More precisely, since the multiplicationAx is performed using Algorithm 1 using the matrix
P and the vectorv, the number of nonzero entries inP determines the iteration cost. Note that



functionfilterAPR (A,x(0), v) {
repeat

x(k+1) = A′′x(k) + x′′

C ;
periodically,

[N, C] = detectConverged(x(k), x(k+1), ε);
[A′′] = filter(A′′, N, C);
[x′′

C ] = filter(x(k), C);
periodically,δ = ||Ax(k) − xk||1;

until δ < ε;
return x(k+1);
}

Algorithm 4: Filter-Based Adaptive PageRank

The above reformulation gives rise to the filter-based Adaptive PageRank scheme:
if we can periodically increase the sparsity of the matrixA, we can lower the average
iteration cost. Consider the set of indicesC of pages that have been identified as having
converged. We define the matrixA′′ as follows:

A′′

ij =

{

0 if i ∈ C,

Aij otherwise.
(10)

In other words, when constructingA′′, we replace the rowi in A with zeros ifi ∈ C.
Similarly, definex′′

C as follows:

(x′′(k)
C )i =

{

(x(k))i if i ∈ C,

0 otherwise.
(11)

Note thatA′′ is much sparser thanA, so that the cost of the multiplicationA′′x is
much cheaper than the cost of the multiplicationAx. In fact, the cost is the same as if
we had an ordered matrix, and performed the multiplicationANx. Now note that

x(k+1) = A′′x(k) + x′′(k)
C (12)

represents an iteration of the Adaptive PageRank algorithm. No expensive reorder-
ing of page identifiers is needed. The filter-based implementation of Adaptive PageRank
is given in Algorithm 4.

5.3 Modified Adaptive PageRank

The core of the Adaptive PageRank algorithm is in replacing the matrix multiplication
Ax(k) with equations 5 and 6, reducing redundant computation by not recomputing the
PageRanks of those pages inC (i.e., those pages that have converged).

subsequently, when we discuss zeroing out rows ofA, this corresponds implementationally to
zeroing out rows of the sparse matrixP .



functionmodifiedAPR(A,x(0), v) {
repeat

x
(k+1)
N

= ANNx
(k)
N

+ y;

x
(k+1)
C

= x
(k)
C

;
periodically,

[N, C] = detectConverged(x(k), x(k+1), ε);
y = ACNx

(k)
C

;
periodically,δ = ||Ax(k) − xk||1;

until δ < ε;
return x(k+1);
}

Algorithm 5: Modified Adaptive PageRank

In this section, we show how to further reduce redundant computation by not re-
computing the components of the PageRanks of those pages inN due to links from
those pages inC.

More specifically, we can write the matrixA in equation 4 as follows:

A =

(

ANN ANC

ACN ACC

)

whereANN are the links from pages that have not converged to pages thathave not
converged,ACN are links from pages that have converged to pages that have not con-
verged, and so on.

We may now rewrite equation 5 as follows:

x
(k+1)
N = ANNx

(k)
N + ACNx

(k)
C .

Since thexC does not change at each iteration, the componentACNx
(k)
C does not

change at each iteration. Therefore, we only need to recompute computeACNx
(k)
C

each time the matrixA is reordered. This variant of Adaptive PageRank is summarized
in Algorithm 5.

As with the standard Adaptive PageRank scheme, explicit reordering of identifiers
is not necessary in the implementation. As shown in Algorithm 6, we can simply form
two matricesACN andANN that have their “deleted” columns and rows zeroed out,
increasing their sparsity and thereby reducing their effective size. We expect that this
algorithm should speed up the computation of PageRank even further as the partial sum
denoted asy in Algorithm 6 is not recomputed in every iteration.

5.4 Advantages

We now discuss how the Adaptive PageRank scheme speeds up thecomputation of
PageRank. The key parameter in the algorithm is how often to identify converged pages
and construct the “compacted” matrixA′′ (or in the case of Modified AdaptivePageR-
ank,A′′

CN andA′′

NN ); since the cost of constructingA′′ from A is on the order of the



functionfilterMAPR (A,x(0), v) {
repeat

x(k+1) = ANNx(k) + y + x′′

C ;
periodically,

N ′ = N, C′ = C; /* Keep track of prev. values */
[N, C] = detectConverged(x(k), x(k+1), ε);
[A′′

NN , A′′

CN ] = filter(A′′

N′N′ , A
′′

C′N′ , N, C);
[x′′

C ] = filter(x(k), C);
y = ACNx(k);

periodically,δ = ||Ax(k) − xk||1;
until δ < ε;
return x(k+1);
}

Algorithm 6: Filter-Based Modified Adaptive PageRank

cost of the multiplyAx, we do not want to apply it too often. However, looking at the
convergence statistics given in Section 4, it is clear that even periodically filtering out
the “converged edges” fromA will be effective in reducing the cost of future iterations
for 3 reasons:

1. Reduced i/o for reading in the link structure
2. Fewer memory accesses when executing Algorithm 1
3. Fewer flops when executing Algorithm 1

We expect the number of iterations required for convergenceto stay roughly constant,
although the average iterationcost will be lowered.

6 Experimental Results

In our experiments, we found that better speedups were attained when we ran the adap-
tive PageRank algorithm in phases where in each phase, we begin with the original
version of the link structure, iterate a certain number of times (in our case 8), prune
the link structure, and iterate some additional number of times (again, 8). In successive
phases, we reduce the tolerance threshold used when pruning. In each phase, pruning
using the current threshold is done once, during the 8th iteration.3 This strategy tries to
keep all pages at roughly the same level of error while computing successive iterates to
achieve some specified final tolerance.

A comparison of the total cost of the standard PageRank algorithm and the two vari-
ants of the Adaptive PageRank algorithm follow. Figure 4(a)depicts the total number
of FLOPS needed to compute the PageRank vector to an L1 residual threshold of10−3

and10−4 using the Power Method and the two variants of the Adaptive Power Method.
The Adaptive algorithms operated in phases as described above using10−2, 10−3, and

3 For slightly better performance, our implementations of Algorithms 4 and 6 fold thefilter()
operation into the previous matrix multiply step.



0

5

10

15

20

25

30

35

40

0.001 0.0001

Final L1 Residual 

10
^9

 F
L

O
P

S

Standard

Adaptive (APR)

Modified Adaptive (MAPR)

0

50

100

150

200

250

300

350

400

0.001 0.0001

Final L1 Residual 

M
in

u
te

s

Standard

Adaptive (APR)

Modified Adaptive (MAPR)

(a) (b)

0

5

10

15

20

25

30

35

40

45

50

0.001 0.0001

Final L1 Residual 

N
u

m
b

er
 o

f 
it

er
at

io
n

s

Standard

Adaptive (APR)

Modified Adaptive (MAPR)

(c)

Fig. 4. Experiments on LARGEWEB dataset depicting total cost for computing the PageRank
vector to an L1 residual threshold of10−3 and10−4; (a) FLOPS (b) Wallclock time (c) Number
of iterations

10−4 as the successive tolerances. As shown in Figure 4(a), the Modified Adaptive
PageRank (MAPR) algorithm decreases the number of FLOPS needed by 26.2% and
27.8% in reaching final L1 residuals of10−3 and10−4, respectively, compared with
the standard power method. Figure 4(b) depicts the total wallclock time needed for the
same scenarios. TheMAPR algorithm reduces the wallclock time needed to compute
the PageRank vectors by 20.3% and 21.6% in reaching final L1 residuals of10−3 and
10−4, respectively. Note that the adaptive methods took a few more iterations for reach-
ing the desired tolerances than the standard power method, as shown in Figure 4(c);
however, as the average iteration cost was much lower, the overall speedup is still sig-
nificant.

7 Related Work

7.1 Fast Eigenvector Computation

The field of numerical linear algebra is a mature field, and many algorithms have been
developed for fast eigenvector computations. However, many of these algorithms are
unsuitable for this problem, because they require matrix inversions or matrix decompo-
sitions that are prohibitively expensive (both in terms of size and space) for a matrix of
the size and sparsity of the Web-link matrix. For example,inverse iteration will find the



principal eigenvector ofA in one iteration, since we know the first eigenvalue. How-
ever, inverse iteration requires the inversion ofA, which is anO(n3) operation. TheQR
Algorithm with shifts is also a standard fast method for solving nonsymmetric eigen-
value problems. However, the QR Algorithm requires a QR factorization ofA at each
iteration, which is also anO(n3) operation. TheArnoldi algorithm is also often used for
nonsymmetric eigenvalue problems. Current work by Golub and Greif (unpublished) is
exploring the use of variants of the Arnoldi algorithm for the PageRank problem. For a
comprehensive review of these methods, see [5].

However, there is a class of methods from numerical linear algebra that are useful
for this problem. We may rewrite the eigenproblemAx = x as the linear system of
equations:(I − A)x = 0, and use the classical iterative methods for linear systems:
Jacobi, Gauss-Seidel, and Successive Overrelaxation (SOR). For the matrixA in the
PageRank problem, the Jacobi method is equivalent to the Power method. Gauss-Seidel
has been shown empirically to be faster for the PageRank problem [1]. Note, however,
that to use Gauss-Seidel, we would have to sort the adjacency-list representation of the
Web graph, so that back-links for pages, rather than forward-links, are stored consec-
utively. The myriad of multigrid methods are also applicable to this problem. For a
review of multigrid methods, see [15].

7.2 PageRank

Seminal algorithms for graph analysis for Web-search were introduced by Page et
al. [16] (PageRank) and Kleinberg [14] (HITS). Much additional work has been done on
improving these algorithms and extending them to new searchand text mining tasks [3,
4, 17, 2, 18, 8]. More applicable to our work are several papers which discuss the com-
putation of PageRank itself [7, 1, 11]. Haveliwala [7] explores memory-efficient com-
putation, and suggests using induced orderings, rather than residuals, to measure con-
vergence. Arasu et al. [1] uses the Gauss-Seidel method to speed up convergence, and
looks at possible speed-ups by exploiting structural properties of the Web graph. Jeh
and Widom [11] explore the use of dynamic programming to compute a large number
of personalized PageRank vectors simultaneously. Kamvar et al. use extrapolation tech-
niques in [13] and aggregation/disaggregation techniquesin [12] to significantly speed
up convergence. Our work is the first to exploit the fact that some pages converge more
quickly than others to speed up the computation of PageRank,with very little overhead.

8 Conclusion

In this work, we present two contributions.
First, we show that most pages in the web converge to their true PageRank quickly,

while relatively few pages take much longer to converge. We further show that those
slow-converging pages generally have high PageRank, and those pages that converge
quickly generally have low PageRank.

Second, we develop two algorithms, called Adaptive PageRank and Modified Adap-
tive PageRank, that exploit this observation to speed up thecomputation of PageRank
by 18% and 28%, resp., by avoiding redundant computation.



References

1. A. Arasu, J. Novak, A. Tomkins, and J. Tomlin. PageRank computation and the structure of
the web: Experiments and algorithms. InProceedings of the Eleventh International World
Wide Web Conference, Poster Track, 2002.

2. K. Bharat and M. R. Henzinger. Improved algorithms for topic distillation in a hyperlinked
environment. InProceedings of the ACM-SIGIR, 1998.

3. S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan. Auto-
matic resource compilation by analyzing hyperlink structure and associated text. InProceed-
ings of the Seventh International World Wide Web Conference, 1998.

4. S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach to topic-
specific web resource discovery. InProceedings of the Eighth International World Wide Web
Conference, 1999.

5. G. H. Golub and C. F. V. Loan.Matrix Computations. The Johns Hopkins University Press,
Baltimore, 1996.

6. G. Grimmett and D. Stirzaker.Probability and Random Processes. Oxford University Press,
1989.

7. T. H. Haveliwala. Efficient computation of PageRank.Stanford University Technical Report,
1999.

8. T. H. Haveliwala. Topic-sensitive PageRank. InProceedings of the Eleventh International
World Wide Web Conference, 2002.

9. T. H. Haveliwala and S. D. Kamvar. The second eigenvalue ofthe Google matrix.Stanford
University Technical Report, 2003.

10. J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke.WebBase: A repository of web
pages. InProceedings of the Ninth International World Wide Web Conference, 2000.

11. G. Jeh and J. Widom. Scaling personalized web search. InProceedings of the Twelfth
International World Wide Web Conference, 2003.

12. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Exploting the block
structure of the web for computing PageRank.Stanford University Technical Report, 1999.

13. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Extrapolation methods
for accelerating PageRank computations. InProceedings of the Twelfth International World
Wide Web Conference, 2003.

14. J. Kleinberg. Authoritative sources in a hyperlinked environment. InProceedings of the
ACM-SIAM Symposium on Discrete Algorithms, 1998.

15. U. Krieger. Numerical solution of large finite markov chains by algebraic multigrid tech-
niques. InProceedings of the 2nd International Workshop on the Numerical Solution of
Markov Chains, 1995.

16. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank citation ranking: Bringing
order to the web.Stanford Digital Libraries Working Paper, 1998.

17. D. Rafiei and A. O. Mendelzon. What is this page known for? Computing web page reputa-
tions. InProceedings of the Ninth International World Wide Web Conference, 2000.

18. M. Richardson and P. Domingos. The intelligent surfer: Probabilistic combination of link and
content information in PageRank. InAdvances in Neural Information Processing Systems,
volume 14. MIT Press, Cambridge, MA, 2002.


